期刊文献+

Banach空间中拟-φ-渐近非扩张映像族的公共不动点的收敛定理

Convergence Theorems of Common Fixed Points for a Family of Quasi-φ-asymptotically Nonexpansive Mappings in Banach Space
下载PDF
导出
摘要 给出了Banach空间中拟-φ-渐近非扩张映像族公共不动点的一个修正的迭代算法,并利用所给出的算法证明了一个强收敛定理,推广了近期的相关结果. We modify an iterative algorithm of common fixed points for a family of quasi-φ-asymptotically nonexpansive mappings in Banach spaces,which is used to prove a strong convergence theorem.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2013年第2期125-128,共4页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(11071053) 军械工程学院基金(YJJXM11003)
关键词 BANACH空间 拟-φ-渐近非扩张映像 公共不动点 迭代算法 Banach space quasi-φ-asymptotically nonexpansive mappings common fixed points iteration algorithm
  • 相关文献

参考文献8

  • 1ALBER Y I. Metric and Generalized Projection Operators in Banach Spaces:Properties and Applications [M]//KARTSA-TOS A G. Theory and Applications of Nonlinear Operators of Accretive Monotone Type. New York: Marcel Dekker,1996:15-20. 被引量:1
  • 2ALBER Y I,REICH S. An Iterative Method for Solving a Class of Nonlinear Operator Equations in Banach Spaces [J].Panamer Math, 1999,4:39-54. 被引量:1
  • 3QIN Xiaolong,SU Yongfu. Strong Convergence Theorems for Relatively Nonexpansive Mappings in a Banach Space [J].Nonlinear Anal,2007,67(6) :1958-1965. 被引量:1
  • 4周海云,马丙坤.Banach空间中可数拟-φ-非扩张映像族的公共不动点的收敛定理[J].数学年刊(A辑),2010,31(5):565-570. 被引量:7
  • 5MATSUSHITA S’TAKAHASHI W,LEWICKI G. A Strong Convergence Theorems for Relatively Nonexpansive Map-pings in a Banach Space [J]. Journal of Approximation Theory ,2005 ,134:257-266. 被引量:1
  • 6AGARWAL R P,O,REGAN D,SAHA D R. Fixed Points Theory for Lipschizian-type Mappings with Applications [M].New York:Springer-verlag,2008. 被引量:1
  • 7HUD2IK H, KOWALEWSKI W, LEWICKI G. Approximative Compactness and Full Rotundity in Musielak-OrliczSpaces and Lorentz-Orlicz Spaces [J]. Z Anal Anuled,2006,25 : 163-192. 被引量:1
  • 8ZHOU Haiyun’GAO Gailiang,TAN Bin. Convergence Theorems of a Modified Hybrid Algorithm for a Family of Quasi-务-asymptotically Nonexpansive Mappings [J]. Appl Math Computing,2010,32:453-464. 被引量:1

二级参考文献9

  • 1Haugazeau Y. Sur les inequations variationnelles et la minimisation de fonctionnelles convexes [D]. These, Paris: Universite de Paris, 1968. 被引量:1
  • 2Bauschke H H, Combettes P L. A weak-to-strong convergence principle for fejermonotone methods in Hilbert spaces [J]. Math Operations Research, 2001, 26(2):248- 264. 被引量:1
  • 3Nakajo K, Takahashi W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J]. J Math Anal Appl, 2003, 279:372-379. 被引量:1
  • 4Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space [J]. J Approximation Theory, 2005, 134:257 266. 被引量:1
  • 5Alber Ya I. Metric and generalized projection operators in Banach spaces: proper- ties and applications [M]//Kartsatos A G (ed). Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Marcel Dekker, 1996:15-50. 被引量:1
  • 6Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space [J]. SIAM J Optim, 2002, 13:938-945. 被引量:1
  • 7Qin x L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space [J]. Nonlinear Anal, 2007, 67:1958-1965. 被引量:1
  • 8Zhou H Y. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces [J]. J Math Anal Appl, 2008, 343:546-556. 被引量:1
  • 9Rockafellar R T. On the maximal monotonicity of subdifferential mappings [J]. Pacific J Math, 1970, 33:209 216. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部