期刊文献+

拟φ—非扩张映像族的公共不动点的强收敛定理 被引量:1

Strong Convergence Theorems of Common Fixed Points for a Family of Quasi φ—Nonexpansive Mappings
原文传递
导出
摘要 在自反的严格凸的光滑Banach空间中给出了一种关于拟φ-非扩张映像族的公共不动点的新混杂算法,并利用广义投影算子和K-K性质等技巧证明了该算法的强收敛性.所得结果是近期相关结果的改进与推广. The purpose of this article is to propose a new hybrid projection algorithm and prove a strong convergence theorem for a family of quasi C-asymptotically nonexpansive mappings by using new analysis techniques. Its results hold in reflexive, strictly convex, smooth Banach spaces with K-K property. The results of this paper improve and extend recent some relative results.
出处 《数学的实践与认识》 CSCD 北大核心 2011年第20期233-239,共7页 Mathematics in Practice and Theory
基金 陕西省教育厅科研计划项目(11JK0486)
关键词 拟φ-非扩张映像族 混杂算法 K—K性质 强收敛定理 A family of quasi φ-nonexpansive mapping Hybrid algorithm K-K propertyStrong convergence theorems
  • 相关文献

参考文献7

  • 1Haugazeau Y. Sur les inequations variationnelles et la minimisation de fonctionnelles convexes[D]. These, Paris: Universite de Paris, 1968. 被引量:1
  • 2Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space[J]. Journal of Approximation Theory, 2005, 134: 257-266. 被引量:1
  • 3Qin x L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space[J]. Nonlinear Anal, 2007, 67(6): 1958-1965. 被引量:1
  • 4Zhou H Y, Gao G L, Tan B. Convergence theorems of a modified hybrid algorithm for a family of quasi-φ-asymptotically nonexpansive mappings[J]. J Appl Math Comput, 2010, 32(2): 453-464. 被引量:1
  • 5周海云,马丙坤.Banach空间中可数拟-φ-非扩张映像族的公共不动点的收敛定理[J].数学年刊(A辑),2010,31(5):565-570. 被引量:7
  • 6Takahashi W. Nonlinear Functional Analysis[M]. Yokohama: Yokohama Publishers, 2000. 被引量:1
  • 7Rockafellar R T. On the maximal monotonicity of subdifferential mappings[J]. Pacific J Math, 1970, 33: 209-216. 被引量:1

二级参考文献9

  • 1Haugazeau Y. Sur les inequations variationnelles et la minimisation de fonctionnelles convexes [D]. These, Paris: Universite de Paris, 1968. 被引量:1
  • 2Bauschke H H, Combettes P L. A weak-to-strong convergence principle for fejermonotone methods in Hilbert spaces [J]. Math Operations Research, 2001, 26(2):248- 264. 被引量:1
  • 3Nakajo K, Takahashi W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J]. J Math Anal Appl, 2003, 279:372-379. 被引量:1
  • 4Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space [J]. J Approximation Theory, 2005, 134:257 266. 被引量:1
  • 5Alber Ya I. Metric and generalized projection operators in Banach spaces: proper- ties and applications [M]//Kartsatos A G (ed). Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. New York: Marcel Dekker, 1996:15-50. 被引量:1
  • 6Kamimura S, Takahashi W. Strong convergence of a proximal-type algorithm in a Banach space [J]. SIAM J Optim, 2002, 13:938-945. 被引量:1
  • 7Qin x L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space [J]. Nonlinear Anal, 2007, 67:1958-1965. 被引量:1
  • 8Zhou H Y. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces [J]. J Math Anal Appl, 2008, 343:546-556. 被引量:1
  • 9Rockafellar R T. On the maximal monotonicity of subdifferential mappings [J]. Pacific J Math, 1970, 33:209 216. 被引量:1

共引文献6

同被引文献9

  • 1Browder F E. Convergence of approximates to fixed points of nonexpansive nonlinear mappings in Banach spaces[J]. Arch Ration Mech Anal, 1967, 24: 82-90. 被引量:1
  • 2Reich S. Strong convergence theorems for resolvents of accretive operators in Banach spaces[J]. J Math Anal Appl, 1980, 75: 287-292. 被引量:1
  • 3Chang S S. On Chidume's open questions andapproximation solutions of multivalued strongly ac- cretive mappings equations in Banach spaces[J]. J Math Anal Appl, 1997, 216:94 -111. 被引量:1
  • 4Yonghong Yao. Strong convergence of an iterative method for nonexpansive mappings with control conditions[J]. Nonlinear Analysis, 2009, 70: 2332-2336. 被引量:1
  • 5S Reich. On the Aymptotic behavior of nonlinear semigroups and the range of accretive operators[J]. J Math Anal Appl, 1981, 79: 113-126. 被引量:1
  • 6Liu L S. Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space[J]. J Math Anal Appl, 1995, 194: 114-125. 被引量:1
  • 7田有先,陈六新.有限一致拟-李卜希兹映象族公共不动点的逼近[J].西南大学学报(自然科学版),2009,31(4):25-29. 被引量:6
  • 8唐艳,闻道君.非扩张映射不动点的粘性逼近方法[J].重庆工商大学学报(自然科学版),2009,26(5):420-423. 被引量:2
  • 9王帮容,闻道君.非扩张映射粘性逼近的强收敛性[J].数学的实践与认识,2011,41(12):216-221. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部