期刊文献+

关于拟严格伪压缩映像族的收缩投影方法

A Shrinking Projection Method on Common Fixed Point for a Family of Quasi-strict Pseudo-contraction Mapping
下载PDF
导出
摘要 在Hilbert空间中,引入和研究一种新的收缩投影方法,用逼近一族闭的拟严格伪压缩映像的公共不动点,并利用所提出的迭代方法证明了拟严格伪压缩映像族的不动公共点强收敛定理. Propose a kind of new shrinking projection method for a family of quasi-strict pseudo-contraction mapping and prove a strong convergence theorem for closed and quasi-strict pseudo-contractions in a Hilbert space. The result improves and extends some recent relative results.
出处 《河南教育学院学报(自然科学版)》 2016年第1期6-9,共4页 Journal of Henan Institute of Education(Natural Science Edition)
基金 银川能源学院科研基金项目(2015-KY-Y-29)
关键词 拟严格伪压缩映像族 不动点 收缩投影方法 闭映像 a family of quasi-strict pseudo-contraction mapping fixed point shrinking projection methods closed mapping
  • 相关文献

参考文献8

二级参考文献67

  • 1Goebel K, Kirk W A. A fixed point theorem for asymptotically nonexpansive[J]. Proc Amer Math Soc, 1972, 35(1):171-174. 被引量:1
  • 2Xu H K. Existence and convergence for fixed point of mapping of asymptotically nonexpansive type[J]. Nonlinear Anal TMA,1991,224:91-101. 被引量:1
  • 3Zhang S S, Cho Y J, Zhou H Y. Iteration Methods for Nonlinear Operator Equations in Banach Spaces[M]. New York :Nova Science Publishers, 2002. 被引量:1
  • 4Takahashi W. Nonlinear Functional Analysis[M]. Yokohama Publishers, Yokohama,2000. 被引量:1
  • 5Kamimura S, Takahashi W. Strong convergence of a solutions to accretive operator inclusions and applications[J]. Set-Val-ue Anal, 2000,8 : 361-374. 被引量:1
  • 6Haugazeau Y. Sur les Inequations Variationnelles et la Minimisation de Fonctionnelles Convexes. Paris: Universite de Paris, 1968. 被引量:1
  • 7Qin X L, Su Y F. Strong convergence theorems for relatively nonexpansive mappings in a Banach space. Nonlinear Anal., 2007, 67(6): 1958-1965. 被引量:1
  • 8Matsushita S, Takahashi W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space. Journal of Approximation Theory, 2005, 134: 257-266. 被引量:1
  • 9Zhou H Y. Convergence theorems of fixed points for Lipschitz pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 2008, 343: 546-556. 被引量:1
  • 10Takahashi W. Nonlinear Functional Analysis. Yokohama: Yokohama Publishers, 2000. 被引量:1

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部