期刊文献+

自动建立信任的防攻击推荐算法研究 被引量:5

Anti-Attack Recommender Algorithm Based on Automatic Trust Establishment
下载PDF
导出
摘要 随着互联网中信息资源的日益增多,个性化推荐技术作为缓解"信息过载"的有效手段,得到了越来越多的研究者的关注.由于互联网天然的开放性,在商业利益的驱动下,部分恶意用户通过伪造虚假数据来影响系统的推荐结果,从而达到盈利的目的.本文提出一个自动建立信任的防攻击推荐算法,在考虑了用户评分相似性的基础上,引入适当的信任机制,通过为目标用户动态建立和维护有限数量的信任对象来获得可靠的推荐.大量基于真实数据集的实验表明,提出的算法能大大提高推荐系统的鲁棒性和可靠性,并在一定程度上提高了推荐的精准度. As the information resources available on the Intemet are booming nowadays,personalized recommendation technique, which is an effective approach to ameliorate information overloading,has increasingly received attentions from researchers. Due to the native open nature of the Intemet and driven by commercial motives,some malicious users attempt to influence the recommendation result via faking data, hoping to gain profits by manipulating recommendation. This paper proposes an anti-attack recommendation algorithm based on automatic trust establishment. Considering the similarities between user ratings, the proposed algorithm introduces a trust mechanism to obtain reliable recommendations through dynamically constructing and maintaining trusted references for users. Enormous experimental results obtained from real datasets reveal that the proposed algorithm could significantly improve both robusmess and reliability of recommendation system, and meanwhile enhance the accuracy of recammendation to some extent.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第2期382-387,共6页 Acta Electronica Sinica
基金 国家自然科学基金重点项目(No.60736020) 国家自然科学基金(No.60970044 No.61272067 No.61272065) 广东省自然科学基金(No.S2012010009311) 广东省科技项目(No.2011A091000036 No.2011168005 No.2011B080100031) 华南理工大学中央高校基本科研重点项目(No.2012ZZ0088)
关键词 推荐系统 用户信任 恶意攻击 recommender system user trust malicious attack
  • 相关文献

参考文献9

  • 1吴永辉,王晓龙,丁宇新,徐军,郭鸿志.基于主题的自适应、在线网络热点发现方法及新闻推荐系统[J].电子学报,2010,38(11):2620-2624. 被引量:29
  • 2张锋,孙雪冬,常会友,赵淦森.两方参与的隐私保护协同过滤推荐研究[J].电子学报,2009,37(1):84-89. 被引量:18
  • 3韩立新.对搜索引擎中评分方法的研究[J].电子学报,2005,33(11):2094-2096. 被引量:4
  • 4Barrtshad Mobasher, Robin D Burke, Runa Bhaumik, Chad Williams. Toward Irustworthy recommender systems: An anal- ysis of attack models and algorithm robustness [ J ]. ACM Transactions on lntemet Technology, 2007,7(4) : 23 - 38. 被引量:1
  • 5P A Chirita, W Nejdl, C Zamfir. Preventing shilling attacks in online recommender systems[ A]. Proceedings of ACM Interna- tional Workshop on Web Information and Data Management [ C]. New York, USA: ACM, 2005.67 - 74. 被引量:1
  • 6Burke R, Mobasher B, Williams C, Bbaumik R. Segment-based injection attacks against collaborative filtering recommender systems [ A ]. Proceedings of the Intemational Conference of Data MiningC C . Chicago, USA: IEEE, 2005.577 - 580. 被引量:1
  • 7Nan Li, Chunping Li. Zero-Sum reward and punishment collab- orative filtering recommendation algorithm[ A]. Proceedings of the IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology[ C ]. Milan, Italy: IEEE, 2009. 548 - 551. 被引量:1
  • 8H Ma, I King, M R Lyu. Learning to recommend with social trust ensemble[ A]. P,eedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval[ C]. New York, USA: ACM, 2009. 203 - 210. 被引量:1
  • 9H Yu, M Kaminsky, P B Gibbons, A Flaxman. SybilGuard: De- fending against sybil attacks via social networks [ J ]. IEEE Transactions on Networking, 2008,16(6) : 576 - 589. 被引量:1

二级参考文献47

共引文献44

同被引文献45

  • 1韩立新.对搜索引擎中评分方法的研究[J].电子学报,2005,33(11):2094-2096. 被引量:4
  • 2Awad M A, Khalil I. Prediction of user's web-browsing behav- ior: Application of Markov model[ J]. IEEF, Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42 (4) : 1131 - 1142. 被引量:1
  • 3Mika P. Ontologies are us:A unified model of social networks and semantics [ J ]. Web Semantics: Science, Services and A- gents on the World Wide Web,2007,5( 1 ) :5 - 15. 被引量:1
  • 4Wan M, Jonsson A,et al.A random indexing approach for web user clustering and web prefetehing [ A ]. Proceedings of the 15th International Conference on New Frontiers in Applied Data Mining [ C]. Berlin,2011.40 - 52. 被引量:1
  • 5Bhawna N, Suresh J. Generating a new model for predicting the next accessed web page in web usage mining[ A]. Proceedings of 3rd International Conference on Emerging Trends in Engi- neering and Technology[ C]. India, 2010.485 - 490. 被引量:1
  • 6Oard D W, Kim J. Implicit feedback for recommender systems [ A ]. Proceedings of the AAAI Workshop on Recommender Systems[ C]. WoUongong, 1998.81 - 83. 被引量:1
  • 7Knijnenburg B P, Willemsen M C, et al. Explaining the user experience of recommender systems [ J ]. User Modeling and User-Adapted Interaction,2012,22(4 - 5):441 - 504. 被引量:1
  • 8Liu Y T,Lin T Y,et al. Browse Rank:letting web users vote for page importance [ A ]. Proceedings of the 31 st Annual In- ternational ACM SIGIR Conference on Research and Develop- ment in lnformalJon Retrieval [ C ]. Singapore, 2008. 451 - 458. 被引量:1
  • 9Komtan J A, Riedl J. Recommender systems: from algorithms to user experience[ J]. User Modeling and User-Adapted Inter- action,2012,22( 1 - 2) : 101 - 123. 被引量:1
  • 10Song Y, Zhang L, et al. Automatic tag recommendation al- gorithm for social recommender systems [ J ]. ACM Trans- actions on the Web,2011,5( 1 ) :4 -39. 被引量:1

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部