期刊文献+

对搜索引擎中评分方法的研究 被引量:4

A Study on the Ranking Method of Search Engines
下载PDF
导出
摘要 针对搜索引擎评分较为困难的问题,文中提出了一种评分方法.该方法使用协同过滤技术,在同一兴趣组中各用户所提供的搜索结果集的基础上,采用文中提出的并行关联规则算法对各用户的局部有向图进行预处理,找出兴趣组中各成员都感兴趣的页面.然后对这些页面的内容和超链接附近出现的文本以及链接结构进行分析.计算权威页面和引导页面,以找到虽不包括在检索结果中,但相关的页面.此外,在对所获得的页面进行评价时,除考虑Web页自身的链接结构和兴趣组中查询用户对页面的评价,还考虑兴趣组中其它成员对页面的评价和所有成员对页面的使用情况等因素,从而使推荐给用户的页面排序更加合理. Currently it is difficult for search engine to rank effectively, THis paper proposes a ranking method of search engines. The method applies collaborative filtering based on the retrieved results from the users in the same community. A parallel algorithm for mining association rules is described to preprocess all users' local directed graphs to find the commonly interesting pages for the users in the same community. Web pages contents, hyperlink structures and the associated texts are then analyzed. Authority pages and hub pages are recognized to discover the related results not found by the search engines. In addition, the evaluation of the web pages is based on not only the hyperlink structures and the query user's evaluation, but also the evaluation of other users in the same community and the usage of the pages by all users.As a result,the ranking method of the search engine is reasonable and effective.
作者 韩立新
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第11期2094-2096,共3页 Acta Electronica Sinica
基金 国家自然科学基金(No.60073029) 中国博士后科学基金(No.2005037720)
关键词 信息检索 搜索引擎 数据挖掘 协同过滤 information retrieval search engine data mining collaborative filtering
  • 相关文献

参考文献6

  • 1CHAKRABARTI Soumen,et al.Mining the Web's link struc-ture[J].IEEE Computer,1999,32(8):60-67. 被引量:1
  • 2CUTLER Michal,et al.A new study on using HTML structures to improve retrieval[A].1999 11th IEEE International Conference on Tools with Artificial Intelligence[C].Chicago,Illinois,USA:IEEE Computer Society.1999.406-409. 被引量:1
  • 3PERKOWITZ Mike,ETZIONI Oren.Towards adaptive Web sites:Conceptual framework and case study[J].Artif Intell,2000,118(1-2):245-275. 被引量:1
  • 4LIEBERMAN Henry.Letizia:An agent that assists web browsing[A].1995 4th International Joint Conference on Artificial Intelligence[C].Montréal,Québec,Canada:AAAI Press,1995.924-929. 被引量:1
  • 5AGRAWAL Rakesh,et al.Parallel mining of association rules[J].IEEE Trans Knowl Data Eng,1996,8(6):962-969. 被引量:1
  • 6CHEUNG David Wai-Lok,et al.A fast distributed algorithm for mining association rules[A].1996 4th International Conference on Parallel and Distributed Information Systems[C].Miami Beach,Florida,USA,1996.31-43. 被引量:1

同被引文献37

  • 1彭波,李晓明.搜索引擎倒排文件的一种分块组织技术[J].电子学报,2005,33(2):358-362. 被引量:9
  • 2Carmel D,Yom-Tov E, Darlow A, et al. What makes a query difficult?. [ A]. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[ C] .New York: ACM,2O06. 390- 397. 被引量:1
  • 3Zhou Y, Croft W B. Ranking robusmess: a novel framework to predict query performance[ A ]. Proceedings of the 15th ACM International Conference on Information and Knowledge Management[ C] .New York: ACM,2006.567 - 574. 被引量:1
  • 4Zhou Y, et al. Query performance prediction in web search environments[ A ]. Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[ C] .New York:ACM,2007.543 - 550. 被引量:1
  • 5Plachouras V, Cacheda F, et al. University of glasgow at the web Track: dynamic application of hyperlink analysis using the query scope[ A ]. Proceedings of the 12th Text Retrieval Conference ( TREC 2003 ) [ C ]. Gaithersburg: NIST, 2003. 248 - 254. 被引量:1
  • 6Cronen-Townsend S, Zhou Y, Croft W B. Predicting query performance[ A ]. Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval[ C]. New York: ACM, 2002.299 - 306. 被引量:1
  • 7He B, Ounis I. Inferring query performance using pre-retrieval predictors[ A]. Proceedings of the llth Symposium on String Processing and Information Retrieval [ C ]. Berlin: Springer, 2004.229 - 248. 被引量:1
  • 8Salton G, Wong A, Yang CS.A vector space model for informarion retrieval [J]. Communications of the ACM, 1975, 18(11):613 - 620. 被引量:1
  • 9Zhao Y, Scholer F, Tsegay Y. Effective we-retrieval query performance prediction using similarity and variability evidence[ A ]. Proceedings of the 30th European Conference on Information Retrieval [ C ]. Berlin: Springer, 2008.52 - 64. 被引量:1
  • 10Kumaran G, Carvalho V R. Reducing long queries using query quality predictors [ A ]. Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval[ C]. New York: ACM, 2009. 564 - 571. 被引量:1

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部