期刊文献+

面向自主意识的标签个性化推荐方法研究 被引量:8

Autonomy Oriented Personalized Tag Recommendation
下载PDF
导出
摘要 在标签系统中,用户使用资源以及标签的习惯受到自身自主意识的影响.当前的标签个性化推荐方法缺乏对此类自主意识信息的描述,限制了个性化推荐的效果.通过采用类似LDA的概率模型,建模了用户的资源使用以及标签使用两方面的自主意识信息,实现了面向用户自主意识的标签推荐.模型的参数使用基于吉布斯抽样的方法进行估计,为快速高效计算模型参数提供了可能.实验结果显示该方法可以提供更高质量的标签个性化推荐结果. In a social tagging system,a user's tagging habits,including choosing which resource to tag and using which tag to annotate a resource, are affected by one's own autonomy. Available personalized rag reconmaendation methods lack the ability to model such autonomy information,and limit the performance of these methods. This paper proposed a latent Dirichlet allocation like probabilistic approach, which modeled user autonomy information such as one's preferences on tag and resource use, to provide au- tonomy oriented personalized tag recommendations. The parameters of the proposed method were estimated following a Gibbs sam- piing approach, which allowed a quick calculation of the values. Experiment results showed that the proposed approach can provide personalized tag recommendations with higher quality.
出处 《电子学报》 EI CAS CSCD 北大核心 2012年第12期2353-2359,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.61073062) 辽宁省自然科学基金(No.20102060) 中央高校基本科研业务费(No.N090604010)
关键词 WEB 2.0 标签推荐 LATENT DIRICHLET ALLOCATION 个性化 自主意识 Web 2.0 tag recommendation latent Dirichlet allocation personalization autonomy
  • 相关文献

参考文献28

  • 1M Guy,E Tonkin. Folksonomies:Tidying up tags[J].D-Lib Magazine,2006,(01):1-14. 被引量:1
  • 2B Sigurbj(o)rnsson,R van Zwol. Flickr tag recommendation based on collective knowledge[A].New York:ACM,2008.327-336. 被引量:1
  • 3A Hotho,R Jaschke. Information retrieval in folksonomies:search and ranking[A].Heidelberg:Springer-Verlag,2006.411-426. 被引量:1
  • 4P Symeonidis,A Nanopoulos. A unified framework for providing recommendations in social tagging systems based on ternary semantic analysis[J].IEEE Transactions on Knowledge and Data Engineering,2010,(02):179-192. 被引量:1
  • 5M Harvey,M Baillie. Tripartite Hidden topic models for personalized tag suggestion[A].Heidelberg:Springer-Verlag,2010.432-443. 被引量:1
  • 6Z Xu,Y Fu. Towards the semantic web:Collaborative tag suggestions[A].http://www.semanticmetadata.net/hosted/taggingws-www2006-files/13.pdf,2006. 被引量:1
  • 7J M Kleinberg. Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,(05):604-632.doi:10.1145/324133.324140. 被引量:1
  • 8Y Song,L Zhang. Automatic tag recommendation algorithms for social recommender systems[J].ACM Transactions on the Web,2011,(01):4-39. 被引量:1
  • 9Y F Xu,L Zhang. Cubic analysis of social bookmarking for personalized recommendation[A].Frontiers of WWW Research and Development-AP Web 2006[A].Heidelberg:Springer-Verlag,2006.733-738. 被引量:1
  • 10L D Lathauwer,B D Moor. A multilinear singular value decomposition[J].SIAM Journal on Matrix Analysis and Applications,2000,(04):1253-1278. 被引量:1

二级参考文献31

  • 1孟涛,王继民,闫宏飞.网页变化与增量搜集技术[J].软件学报,2006,17(5):1051-1067. 被引量:22
  • 2Hafri Y,Djeraba C.High performance crawling system.In:Proc.of the 6th ACM SIGMM Int'1 Workshop on Multimedia Information Retrieval.New York:ACM Press,2004.299-360. 被引量:1
  • 3A Heydon,M Najork.Mercator:a scalable,extensible web crawler.International conference on World Wide Web.New York:ACM Press,1999.219-229. 被引量:1
  • 4Yan HF,Wang JY,Li XM,Guo L.Architectural design and evaluation of an efficient Web-crawling sysgem[J].Journal of Systems and Software.2002,60(3):185-193. 被引量:1
  • 5J Edwards,K McCurl,J Tomin.An adaptive model for optimizing performance of an incremental web crawler.International conference on World Wide Web.New York:ACM Press,2001.106-113. 被引量:1
  • 6J Cho,H Garcia-Molina.Effective page refresh policies for web crawlers.ACM Transactions on Database Systems.New York:ACM Press,2003.390-426. 被引量:1
  • 7Page L,Brin S,Motwani R.The PageRank Citation Ranking:Bring Oreder to the Web.Technical report,1998. 被引量:1
  • 8Feng G,Liu TY,Wang Y,et al.AggregateRank:bring order to web sites.Proceedings of the 29th annual international ACM SIGIR conference.New York:ACM Press,2006.75-82. 被引量:1
  • 9J Allan,J Carbonell,G Doddington.et al.Topic detection and tracking pilot study:Final report.In Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop.San Fransisco:Morgan Kaufmann Press Ltd,1999.194-218. 被引量:1
  • 10D M Blei,A Y Ng,M I Jordan.Latent dirichlet allocation[J].J.Mach.Learn.Res.,2003,3(5):993-1022. 被引量:1

共引文献53

同被引文献61

  • 1邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,1983. 被引量:12
  • 2Awad M A, Khalil I. Prediction of user's web-browsing behav- ior: Application of Markov model[ J]. IEEF, Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2012, 42 (4) : 1131 - 1142. 被引量:1
  • 3Mika P. Ontologies are us:A unified model of social networks and semantics [ J ]. Web Semantics: Science, Services and A- gents on the World Wide Web,2007,5( 1 ) :5 - 15. 被引量:1
  • 4Wan M, Jonsson A,et al.A random indexing approach for web user clustering and web prefetehing [ A ]. Proceedings of the 15th International Conference on New Frontiers in Applied Data Mining [ C]. Berlin,2011.40 - 52. 被引量:1
  • 5Bhawna N, Suresh J. Generating a new model for predicting the next accessed web page in web usage mining[ A]. Proceedings of 3rd International Conference on Emerging Trends in Engi- neering and Technology[ C]. India, 2010.485 - 490. 被引量:1
  • 6Oard D W, Kim J. Implicit feedback for recommender systems [ A ]. Proceedings of the AAAI Workshop on Recommender Systems[ C]. WoUongong, 1998.81 - 83. 被引量:1
  • 7Knijnenburg B P, Willemsen M C, et al. Explaining the user experience of recommender systems [ J ]. User Modeling and User-Adapted Interaction,2012,22(4 - 5):441 - 504. 被引量:1
  • 8Liu Y T,Lin T Y,et al. Browse Rank:letting web users vote for page importance [ A ]. Proceedings of the 31 st Annual In- ternational ACM SIGIR Conference on Research and Develop- ment in lnformalJon Retrieval [ C ]. Singapore, 2008. 451 - 458. 被引量:1
  • 9Komtan J A, Riedl J. Recommender systems: from algorithms to user experience[ J]. User Modeling and User-Adapted Inter- action,2012,22( 1 - 2) : 101 - 123. 被引量:1
  • 10Hu Minqing, Bing Liu. Mining and summarizing customer re- views[ A] .Proceedings of the 10th ACM SIGKDD Internation- al Conference on Knowledge Discovery and Data Mining[ C]. Seattle: ACM,2004.168 - 177. 被引量:1

引证文献8

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部