期刊文献+

基于变采样率的多假设预测分块视频压缩感知 被引量:18

Block Compressed Sensing of Video Based on Variable Sampling Rates and Multihypothesis Predictions
下载PDF
导出
摘要 现有的分块视频压缩感知通常对所有图像块均采用相同的测量矩阵进行测量,这种平均分配采样率的测量方式忽略了视频中不同区域的结构复杂度和变化程度不同的事实。针对这一问题,该文根据视频帧间相关性的分布特点提出了一种自适应分配采样率的变采样率压缩感知方法。将图像块按照帧间相关性的大小分类并分配不同的采样率,重构过程采用变采样率多假设预测算法以充分利用帧间相关性。实验结果表明该文算法能够在低采样率下重构出高质量的视频图像,而且这种变采样率测量的方式有利于提高运动剧烈区域的重构质量。 For most of those existing block-based compressed sensing of video, the same measurement matrix is usually utilized for all blocks, which underestimates the fact that the structural complexity and the movement varies from different regions. To address this issue, a novel block-based adaptive compressde sensing algorithm with variable sampling rate is proposed according to the distribution characteristics of the correlations between neighboring frames. It classifies blocks into different types depending on their inter-frame correlation, and adjusts the sampling rate accordingly. Multihypothesis predicting algorithm is used to reconstruct the videos to make full use of the inter-frame correlation. The experiment showes that the proposed algorithm reduces the number of sampled measurements while still improving the quality of the reconstructed frames. Also, with the variable sampling rate method, a higher reconstruction quality can be achieved for the regions containing relatively fast movement.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第1期203-208,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61071200 60772079) 河北省自然科学基金(F2010001294)资助课题
关键词 压缩感知 变采样率 自适应采样 帧间相关性 多假设预测 Compressed Sensing (CS) Variable sampling rates Adaptive sampling Inter-frame correlation Multihypothesis prediction
  • 相关文献

参考文献19

  • 1Candes E J,Romberg J,and Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].{H}IEEE Transactions on Information Theory,2006,(02):489-509. 被引量:1
  • 2石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:709
  • 3Waters A E,Sankaranarayanan A C,Baraniuk R G. SpaRCS:recovering low-rank and sparse matrices from compressive measurements[A].Granada,Spain,2011. 被引量:1
  • 4Lee K and Bresler Y. ADMiRA:atomic decomposition for minimum rank approximation[J].{H}IEEE Transactions on Information Theory,2010,(09):4402-4416. 被引量:1
  • 5Donoho D L. Compressed sensing[J].{H}IEEE Transactions on Information Theory,2006,(04):1289-1306.doi:10.1109/TIT.2006.871582. 被引量:1
  • 6Candes E J and Wakin M B. An introduction to compressive sampling[J].{H}IEEE Signal Processing Magazine,2008,(02):21-30. 被引量:1
  • 7Wakin M B;Laska J N;Duarte M F.Compressive imaging for video representation and coding[A]{H}北京,2006. 被引量:1
  • 8Gan L. Block compressed sensing of natural images[A].Cardiff,UK,2007.403-406. 被引量:1
  • 9Mun S,Fowler J E. Block compressed sensing of images using directional transforms[A].Cairo,Egypt,2009.3021-3024. 被引量:1
  • 10Fowler J E,Mun S,Tramel E W. Multiscale block compressed sensing with smoothed projected landweber reconstruction[A].Barcelona,Spain,2011.564-568. 被引量:1

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献708

同被引文献187

  • 1Soni A,Haupt J. Efcient adaptive compressive sensing u-sing sparse hierarchical learned dictionaries [ C ] //Pro-ceedings of 2011 Conference Record of the Forty FifthAsilomar Conference on Signals, Systems and Computers.Pacific Grove, CA : IEEE ,2011 : 1250-1254. 被引量:1
  • 2Wamell G, Reddy D, Chellappa R. Adaptive rate com-pressive sensing for background subtraction [ C ]//Pro-ceedings of 2012 IEEE International Conference on A-coustics,Speech,and Signal Processing. Kyoto : IEEE,2012:1477-1480. 被引量:1
  • 3Gan L. Block compressed sensing of natural images[C]// Proceedings of the 15th International Conferenceon Digital Signal Processing. Cardiff, UK : IEEE, 2007 :403-406. 被引量:1
  • 4Tramel E W, Fowler J E. Video compressed Sensing withmultihypothesis [ C ] // Proceedings of the IEEE Data Com-pression Conference. Snowbird, UT: IEEE ,2011 : 193—202. 被引量:1
  • 5Mun S,Fowler J E. Block compressed sensing of imagesusing directional transforms [ C ] // Proceedings of the In-ternational Conference on Image Processing. Cairo, E-gypt;IEEE, 2009: 3021-3024. 被引量:1
  • 6Candes E, Roberg J, Tao T. Robust uncertainty principles : exact signal reconstruction from highly in- complete frequency information [J] IEEE Transac- tion on Information Theory, 9,006, 52(2)..489-509. 被引量:1
  • 7Kang Liwei, Lu Chun-shien. Distributed compres- sive video sensing [C]// Proceedings of IEEE Inter- national Conference on Acoustics, Speech, and Signal Processing (ICASSP). Taipei, Taiwan: IEEE, 2009= 1169-1172. 被引量:1
  • 8Do T, Chen Yi, Nguyen D, et al. Distributed com- pressed video sensing [C]// Proceedings of IEEE In- ternational Conference on Image Processing (ICIP). Carlo, Egypt: IEEE, 2009..1393-1396. 被引量:1
  • 9Mun S, Fowler J. Residual reconstruction for block- based compressed sensing of video [C]// Proceedingsof Data Compression Conference (DCC). Snowbird, Utah, USA.. IEEE, 2011..183-192. 被引量:1
  • 10Tramel E, Fowler J. Video compressed sensing with multihypothesis [C]// Proceedings of Data Compres- sion Conference (DCC). Snowbird, Utah, USA: IEEE, 2011 =193-202. 被引量:1

引证文献18

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部