期刊文献+

带权分块压缩感知的预测目标跟踪算法 被引量:2

Tracking Using Weighted Block Compressed Sensing and Location Prediction
下载PDF
导出
摘要 针对矩形跟踪框在边缘处包含较多背景信息的问题,该文提出一种基于规范化梯度特征的带权分块压缩感知的目标特征提取方法。该方法将压缩感知测量矩阵转化为分块对角矩阵,且根据块的重要程度分配适当的权重,缩小测量矩阵规模,简化特征提取运算,弱化背景干扰。然后将提取的特征输入变先验概率的贝叶斯分类器,变先验概率的分类器充分利用已有的跟踪结果,从一定程度预测了目标的运动方向,减小候选目标的分类歧义性,使得每一帧的分类函数根据以往跟踪结果进行变化,提高了分类的准确度。实验在8个具有常见跟踪难度的序列中测试,并与目前较流行的4种目标跟踪算法在跟踪效果、成功率等方面进行比较,结果从多个角度表明,该文提出的目标跟踪算法具有较高的准确度和稳定性。 To reduce side effects of background information included in the outer parts of tracking rectangular boxes, a weighted block compressed sensing feature extraction method is proposed based on normalized gradient features. The compressed sensing measurement matrix is converted to a block diagonal matrix. Appropriate weights are assigned to different blocks according to the importance of the blocks. It aims to reduce the measurement matrix size, weaken background interference and simplify feature extraction. Then the extracted features are inputted into Bayesian classifier with adaptive priori probabilities, which is proposed to make full use of existing tracking results. To some extent the classifier with variable priori probabilities can predict the direction of the moving targets, and reduce the ambiguities of target candidates. Each frame classification function changes according to the results of the previous track to improve the classification accuracy. In the experiments compared with four state-of-the-art tracking algorithms on 8 commonly used tracking test sequences, the proposed target tracking algorithm has higher accuracy and stability in terms of tracking results and success rate.
出处 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1160-1166,共7页 Journal of Electronics & Information Technology
基金 国家973计划项目(2010CB327900) 国家自然科学基金(61105042 61462035) 江西省教育厅科技项目(GJJ13421)资助课题
关键词 目标跟踪 分块压缩感知 贝叶斯分类器 变先验概率 Object tracking Block compressed sensing Bayes classifier Variable priori probability
  • 相关文献

参考文献15

  • 1Yilmaz A, Javed O, and Shah M. Object tracking:a survey[J]. ACM Computing Surveys, 2006, 38(4): 1-29. 被引量:1
  • 2Saffari A, Godec M, Pock T, et al: Online multi-class LPBoost[C]. Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, USA, 2010: 3570-3577. 被引量:1
  • 3Babenko B, Yang M H, and Belongie S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632. 被引量:1
  • 4Zhang Kai-hua, Zhang Lei, and Yang M H. Real-time compressive tracking[C]. Preceedings of the European Conference on Computer Vision, Florence, Italy, 2012, 3: 864-877. 被引量:1
  • 5Mei Xue and Ling Hai-bin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11): 2259 2272. 被引量:1
  • 6孙景乐,唐林波,赵保军,刘晴.基于瑞利分布的粒子滤波跟踪算法[J].电子与信息学报,2013,35(4):763-769. 被引量:16
  • 7Kalal Z, Mikolajczyk K, and Matas J. Face-TLD: tracking- learning-detection applied to faces[C]. Preceedings of the IEEE International Conference on Image Processing, Hong Kong, China, 2010: 3789-3792. 被引量:1
  • 8Cheng Ming-ming, Zhang Zi-ming, Lin Wen-yan, et al: BING binarized normed gradients for objectness.estimation at300fps[OL]. http://mmcheng.net/bing/, 2014. 被引量:1
  • 9Liu Gan. Block compressed sensing of natural images[C]. Preceedings of the International Conference on Digital Signal Processing, Cardiff, Britain, 2007: 403-406. 被引量:1
  • 10Wu Y, Lim J, and Yang M H. Online object tracking: a benchmark[C]. Preceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA, 2013: 2411-2418. 被引量:1

二级参考文献45

  • 1胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 2Bakhtari A, Mackay M, and Benhabib B. Active-vision for the autonomous surveillance of dynamic, multi-object environments[J]. Journal of Intelligent Robot System, 2009, 54(4): 567-593. 被引量:1
  • 3Vadakkepat P, Lim P, Desilva L, et al.. Multimodal approach to human-face detection and tracking[J]. IEEE Transactions on Industrial Electronics, 2008, 55(3): 1385-1392. 被引量:1
  • 4Matei B, Sawhney H, and Samarasekera S. Vehicle tracking across non-overlapping cameras using joint kinematic and appearance features[C]. The 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs 2011: 3465-3472. 被引量:1
  • 5Kalal Z, Mikolajczyk K, and Matas J. Tracking- learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. 被引量:1
  • 6Yang Han-xuan, Shao Ling, Zhang Feng, et al.. Recent advances and trends in visual tracking: a review[J]. Neurocomputing, 2012, 74(18): 3823-3831. 被引量:1
  • 7Kwon J and Lee K. Tracking of a non-rigid object via patch- based dynamic appearance modeling and adaptive basin hopping Monte Carlo sampling[C]. IEEE Conference on Computer Vision and Pattern Recognition, Miami, 2009: 1208-1215. 被引量:1
  • 8Nejhum S, Ho J, and Yang Ming-hsuan. Online visual tracking with histograms and articulating blocks[J]. Computer Vision and Image Understanding, 2010, 114(8): 901-914. 被引量:1
  • 9Maggio E and Cavallaro A. Multi-part target representation for color tracking[C]. IEEE International Conference on Image Processing, Genoa, 2005: 729-732. 被引量:1
  • 10Adam A, Rivlin E, and Shimshoni I. Robust fragments-based tracking using the integral histogram[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, 2006: 798-805. 被引量:1

共引文献54

同被引文献22

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部