期刊文献+

基于变采样率压缩感知的视频压缩研究 被引量:3

Block compressed sensing of video based on variable sampling rates
下载PDF
导出
摘要 业界分块视频压缩感知通常对所有图像块均采用相同的测量矩阵进行测量,这种方式未考虑到视频中不同区域的变化程度不同的事实。在视频帧间相关性的基础上提出一种自适应分配采样率的方法,即在编码端根据图像块的帧间相关性大小分类并分配不同的采样率;在解码端使用全变差算法以充分利用帧间相关性。为减小网络环境影响,此算法不区分参考帧与非参考帧,并对每一帧作相同处理。实验结果表明,该方法能够在较低采样率下重构出较高质量的视频图像,并且缩短计算时间。 The current block compressed sensing of video usually uses the same measurement matrix to all image block, this method ignores the fact that the structural complexity and the movement varies from different regions in video. Therefore, an adaptive allocation of sampling rate compressed sensing method is proposed according to the distribution feature of the correlations between neighboring frames. It classified blocks into different types depending on the inter-frame correlation, and adjusted different sampling rate to different blocks, total variation algorithm was used to reconstruct the videos to make fully use of the inter-frame correlation. In order to overcome the network environment, this algorithm didn't distinguish the reference frame and the non-reference frame, each frame was treated equally. The experimental results show that the method can reconstruct high quality video image under low sampling rate, and with the variable sampling rate measurement method, a higher reconstruction quality can be achieved for the regions containing relatively fast movement.
出处 《电子技术应用》 北大核心 2015年第10期147-149,153,共4页 Application of Electronic Technique
基金 2013年青年科学基金项目(61304124)
关键词 压缩感知 视频编码 全变差算法 变采样率 分块 compressed sensing video coding total variation algorithm variable sampling rates block
  • 相关文献

参考文献12

  • 1CANDES E J,ROMBERG J,TAO T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006,52(2) : 489-509. 被引量:1
  • 2DONOHO D L.Compressed sensing[J].IEEE Transaction on Information Theory, 2006,52(4) : 1289-1306. 被引量:1
  • 3GAN L.Block compressed sensing of natural images[C]. Proceedings of the 15th International Conference on DigitalSignal Processing, Cardiff, UK, 2007 : 403-406. 被引量:1
  • 4VIJAYANAGAR K R, LIU Y, KIM J.Adaptive measurement rate allocation for block-based compressed sensing of depth maps[C].Image Processing(ICIP),2014 IEEE International Conference on. IEEE, 2014 : 1307-1311. 被引量:1
  • 5BAI H,ZHANG M,LIU M, et al.Depth image coding using entropy-based adaptive measurement allocation[J]. Entropy, 2014,16(12) : 6590-6601. 被引量:1
  • 6李然,干宗良,崔子冠,武明虎,朱秀昌.图像分块压缩感知中的自适应测量率设定方法[J].通信学报,2014,35(7):77-85. 被引量:5
  • 7张秋余,孙媛,晏燕.基于分块自适应压缩感知的可逆水印算法[J].电子与信息学报,2013,35(4):797-804. 被引量:15
  • 8田天..基于帧间相关性的视频压缩感知算法[D].燕山大学,2013:
  • 9练秋生,田天,陈书贞,郭伟.基于变采样率的多假设预测分块视频压缩感知[J].电子与信息学报,2013,35(1):203-208. 被引量:18
  • 10LI C,JIANG H,ZHANG Y.Video coding using compres- sive sensing for wireless communications[C].IEEE Wireless Communications and Networking Conference.2011 : 2077- 2082. 被引量:1

二级参考文献59

  • 1Tian J. Reversible data embedding using a difference expansion[J]. IEEE Transactions on Circuits System Video Technology, 2003, 13(8): 890- 896. 被引量:1
  • 2Honsinger C W, Jones P, Rabbani M, et al.. Lossless recovery of an original image containing embedded data[P]. US, Patent, US006278791Bl, 2001-08-21. 被引量:1
  • 3Tai W L, Yeh C M, and Chang C C. Reversible data hiding based on histogram modification of pixel differences[J]. IEEE Transactions on Circuits System Video Technology, 2009, 19(6): 906 -910. 被引量:1
  • 4Chung Kuo-liang, Huang Yong-huai, Yan Wen-ming, et al.. Distortion reduction for histogram modification-based reversible data hiding[J]. Applied Mathematics Computation, 2012, 218(9): 5819-5826. 被引量:1
  • 5Celik M U, Shaxma G, Tekalp A M, et al.. Lossless generalized-LSB data embedding[J]. IEEE Transactions on Image Processing, 2005, 14(2): 253- 266. 被引量:1
  • 6Peng Fei, Li Xiao-long, and Yang Bin. Adaptive reversible data hiding scheme based on integer transform[J]. Signal Processing, 2012, 92(1): 54-62. 被引量:1
  • 7Alattar A M. Reversible watermark using the difference expansion of a generalized integer transform[J]. IEEE Transactions on Image Processing, 2004, 13(8): 1147-1156. 被引量:1
  • 8Arsalan M, Malik S A, and Khan A. Intelligent reversible watermarking in integer wavelet domain for medical images[J]. Journal of Systems and Software, 2012, 85(4): 883-894. 被引量:1
  • 9Chaumont M and Puech W. A high capacity reversible watermarking scheme[C]. Proceedings of the SPIE-IS=T Electronic Imaging, Visual Communications and Image Processing, San Jose, California, USA, Sept. 11-12, 2009, SPIE Vol. 7257: 1-9. 被引量:1
  • 10Coltuc D. Improved capacity reversible watermarking[C]. Proceedings of the 14th IEEE International Conference on Image Processing(ICIP'07), San Antonio, TX, USA, Sept. 16 -Oct. 19, 2007, Vol.3:249 -252. 被引量:1

共引文献37

同被引文献22

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部