期刊文献+

倒装芯片封装中非牛顿流体下填充的数值仿真 被引量:3

Numerical Simulation of Non-Newtonian Underfill in Flip-Chip Packaging
下载PDF
导出
摘要 倒装芯片封装中的下填充工艺可以有效地提高封装连接的可靠性,因而得到了广泛应用。含有硅填料的环氧树脂是常用的下填充胶料,在下填充流动过程中表现出明显的非牛顿流体特性。利用Fluent软件对具有非牛顿流体特性胶料的下填充过程进行了三维数值模拟。采用流体体积比函数(VOF)对流动前沿界面进行追踪,再用连续表面张力(CSF)模型来计算下填充流动的毛细驱动力,并用幂函数本构方程来体现下填充胶料的非牛顿流体特性。通过数值模拟,获得了下填充流动前沿位置随时间变化的数据,这些数据与实验结果有较好的吻合度。该数值方法可较好地预测具有非牛顿流体性质胶料的下填充过程。 Underfill technology is often used in flip-chip packaging as it can improve the reliability of the interconnect systems effectively. Epoxy containing silica fillers is the most common encapsulant, and it exhibits obvious non-Newtonian behavior in the underfill flow. The 3D simulation of the filling process was operated using Fluent software. Volume of fluid (VOF) technique was applied to track the flow front, and the continuum surface force (CSF) model was used to describe the capillary force when the power-law type equation was employed to model the viscosity of the underfill encapsulant. The numerical results show the variation of flow front position with respect to time agrees well with the previous experimental data. This simulation provides a reasonable flow front prediction for underfill flow of encapsulant with non-Newtonian feature.
出处 《半导体技术》 CAS CSCD 北大核心 2013年第1期69-73,78,共6页 Semiconductor Technology
关键词 倒装芯片 下填充 非牛顿流体 流体体积比函数 连续表面张力模型 flip-chip underfill non-Newtonian flow volume of fluid (VOF) continuum surface force (CSF) model
  • 相关文献

参考文献20

  • 1WONG C P, WONG M M. Recent advances in plastic packaging of flip-chip and multichip modules (MCM) of microelectronics [ Jl. IEEE Transactions on Components and Packaging Technology, 1999, 22 (1) : 21 -25. 被引量:1
  • 2HAN S, WANG K K. Analysis of the flow of encapsulant during underfill encapsulation of flip-chips [J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 1997, 20 (4): 424-433. 被引量:1
  • 3YOUNG W B. Effect on filling time for a non-newtonian flow during the underfilling of a flip chip [ J ]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1 (7): 1048-1053. 被引量:1
  • 4YOUNG W B, YANG W L. Underfill viscous flow between parallel plates and solder bumps [ J ]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2002, 25 (4): 695-700. 被引量:1
  • 5YOUNG W B, YANG W I, The effect of solder bump pitch on the underfill flow [ J ]. IEEE Transaction on Advanced Packaging, 2002, 25 (4): 537-542. 被引量:1
  • 6YOUNG W B, YANG W L. Underfill of flip-chip: the effect of contact angle and solder bump arrangement [ J ]. IEEE Transaction on Advanced Packaging, 2006, 29 (3) : 647 -653. 被引量:1
  • 7WAN J W, ZHANG W J, BERGSTROM D J. Influence of transient flow and solder bump resistance on underfill process [ J ]. Microelectronics Journal, 2005, 36 (8): 687-693. 被引量:1
  • 8WAN J W, ZHANG W J, BERGSTROM D J. An analytical model for predicting the underfill flow characteristics in flip-chip encapsulation [ J ]. IEEE Transaction on Advanced Packaging, 2005, 28 ( 3 ) : 481 -487. 被引量:1
  • 9WAN J W, ZHANG W J, BERGSTROM D J. A theoretical analysis of the concept of critical clearance towards a design methodology for the flip-chip package [J]. ASME Journal of Electronics Packaging, 2007, 129 (4): 473 -478. 被引量:1
  • 10WAN J W, ZHANG W J, BERGSTROM D J. Numerical modeling for the undeffill flow in flip-chip packaging [ J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32 (2): 227-234. 被引量:1

二级参考文献19

  • 1柳和生,胡海明.罚有限元法在聚合物成型加工研究中的应用[J].青岛化工学院学报(自然科学版),1995,16(4):376-381. 被引量:8
  • 2杨临裕,张辉,李勇.板材挤出机头流道中蠕变流动的数值分析[J].模具工业,1996,22(8):28-31. 被引量:3
  • 3YOUNG W B. Modeling of a non-newtonian flow between parallel plates in a flip chip encapsulation [ J ] . Microelectronics Reliability, 2010, 50(7): 995- 999. 被引量:1
  • 4WAN J W, ZHANG W J, BERGSTROM D J. Numerical modeling for the underfill flow in flip-chip packaging[ J ]. IEEE Transactions on Components and Packaging Technologies,2009, 32 ( 2 ) : 227 - 230. 被引量:1
  • 5WAN J W, ZHANG W J, BERGSTROM D J. Recent advances in modeling the underfill process in flip-chip packaging[ J ]. Microelectronics Journal, 2007, 38 ( 1 ) : 67 - 75. 被引量:1
  • 6WASHBURN E W. The dynamics of capillary flow [ J]. Physical Review, 1921 , 17(3) : 273 -283. 被引量:1
  • 7YOUNG W B. Analysis of capillary flows in non-uniform cross-sectional capillaries [ J ] . Colloids and Surfaces A: 2004, 234(1/3) : 123 - 128. 被引量:1
  • 8HIRT C W, NICHOLS D. Volume of fluid (VOF) method for the dynamics of free boundaries [ J ] . Journal of Computational Physics, 1981, 39 ( 1 ) : 201 - 225. 被引量:1
  • 9BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension [ J ]. Journal of Computational Physics, 1992, 100 ( 2 ) : 335 - 354. 被引量:1
  • 10A P Kakouris et al, NonisothermalFlow of a Generalized Power-Law Fluid.in Converging Sections for Rubber Extrusion [J]. Polym Eng Sci, 1987,27(18): 1371-1379. 被引量:1

共引文献12

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部