期刊文献+

接触角滞后对变截面微通道内水银液滴流动特性影响的数值仿真研究

Numerical Simulation of Mercury Droplet Flow in Varying-Cross-Section Microchannel with Contact Angle Hysteresis
下载PDF
导出
摘要 为了能更真实反映变截面硅微通道内惯性力驱动水银微液滴的流动特性,在数值仿真中应考虑接触角滞后对流动特性的影响。利用FLUENT软件的VOF-CSF模型研究了惯性微流体开关中水银微液滴在变截面微通道内受惯性力驱动的流动特性,编写动态和静态接触角滞后的UDF函数,对变截面微通道中内流动特性进行了数值仿真分析。结果表明,设置静态接触角和加载10°接触角滞后UDF函数时,惯性微流体开关的加速度阈值分别为13.2 g n和16.4 g n。不同接触角滞后值对水银微液滴的流动特性有重要影响,且接触角滞后性越大,水银液滴流动速度降低,更难冲破微阀进入储液槽。由于水银液滴在惯性力驱动下的接触线运动速度较低,动态接触角对流动特性的影响可以忽略,动态接触角滞后可由静态接触角滞后代替。 In order to truly reflect the flow characteristics of mercury droplet flow in varying-cross-section mierochannel driven by inertia force, the impact of contact angle hysteresis on flow characteristics should be considered in numerical simulations. The VOF-CSF model of FLUENT software is used to study the flow characteristics of mercury droplet flow in varying-cross-section microchannel of micro fluidic inertia switch. Write the UDF of dynamic and static contact angle hysteresis,and simulate the flow characteristics in varying-section-mi- crochannel. The results show that the static contact angle and the contact angle hystersis of 10~are set in simulation, the acceleration threshold of micro fluidic inertia switch is 13.2 g,, and 16.4 go ,respectively. The different contact angle hysteresis have an important impact on flow characteristics. The greater the contact angle hysteresis, the smaller the flow velocity of mercury droplet, and the harder mercury droplet breaks through the micro-valve and enters the reservior. Under the action of acceleration signal the contact line velocity of mercury droplet in varying- section-microchannel is lower, thus the effect of dynamic contact angle hysteresis on flow characteristics can be ignored and replaced by static contact angle hysteresis.
出处 《传感技术学报》 CAS CSCD 北大核心 2013年第11期1488-1492,共5页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金委员会和中国工程物理研究院联合基金项目(11076024) 四川省教育厅重点项目(11ZA216)
关键词 两相流 水银微液滴 流动特性 数值仿真 two-phase flow mercury droplet flow characteristics numerical simulation
  • 相关文献

参考文献13

  • 1Thomas Cubaud,Umberto Ulmanella,Chih-Ming Ho. Two-Phase Fow in Microchannels with Surface Modifications[J].Fluid Dynamics Research,2006.772-786. 被引量:1
  • 2朱亮,冯焱颖,叶雄英,武雁斌,周兆英.粗糙表面的可控润湿性研究[J].传感技术学报,2006,19(05A):1709-1712. 被引量:12
  • 3Eral H B,Mannetje D J C M't,Oh J M. Contact Angle Hysteresis:A Review of Fundamentals and Applications[J].Colloid and Polymer Science,2013,(02):247-260. 被引量:1
  • 4王晓东,彭晓峰,闵敬春,刘涛.接触角滞后现象的理论分析[J].工程热物理学报,2002,23(1):67-70. 被引量:59
  • 5曹晓平..流体在粗糙固体表面的浸润及其滞后现象[D].中南大学,2005:
  • 6Chen Fang,Carlos Hidrovo,Wang Fumin. 3-D Numerical Simulation of Contact Angle Hysteresis for Microscale Two Phase Flow[J].International Journal of Multiphase Flow,2008.690-705. 被引量:1
  • 7van Mourik S,Veldman A E P,Dreyer M E. Simulation of Capillary Flow with a Dynamic Contact Angle[J].Microgravity Science and Technology,2005.87-93. 被引量:1
  • 8Jean-Baptiste Dupont,Dominique Legendre. Numerical Simulation of Static and Sliding Drop with Contact Angle Hysteresis[J].Journal of Computational Physics,2010,(07):2453-2478. 被引量:1
  • 9Joonwon Kim,Wenjiang Shen,Laurent Latorre. A Microme-chanical Switch with Electrostatically Driven Liquid-Metal Droplet[J].Sensors and Actuators A:Physical,2002.672-679. 被引量:1
  • 10Subedi D P. Contact Angle Measurement for the Surface Characteri-zation of Solids[J].The Himalayan Physics,2011,(02):1-4. 被引量:1

二级参考文献17

  • 1AW亚当森 顾惕人.表面的物理化学[M].北京:科学出版社,1984.351-370. 被引量:2
  • 2Kim D S,Lee K C,Kwon T H.Micro-channel filling considering surface tension[J].J Micromech Microeng,2002,12:236-246. 被引量:1
  • 3Tseng F G,Yang I D,Lin K H,et al.Fluid filling into micro-fabricated reservoirs[J].Sensors and Actuators A,2002,97-98:131-138. 被引量:1
  • 4Hirt C W,Nichols B D.Volume of fluid (VOF) method or the dynamics of free boundaries[J].J Comput Phys,1981,39:201-225. 被引量:1
  • 5Brackbill J U,Kothe D B,Zemach C.A continuum method for modeling surface tension[J].J Comput Phys,1992,100:335-354. 被引量:1
  • 6Youngs D L.Time-dependent multi-material flow with large fluid distortion[A].Morton K W,Baines M J.Numerical Methods for Fluid Dynamics[C].New York:Academic Press,1982.273-285. 被引量:1
  • 7Zhmud B V,Tiberg F,Hallstensson K.Dynamics of capillary rise[J].J Colloid Interface Sci,2000,228:263-269. 被引量:1
  • 8Akira Nakajima, Kazuhito Hashimoto, and Toshiya Watanabe Monatshefte fuer Chemie[J]. 2001,132: 31-41. 被引量:1
  • 9Blossey R. Nature Materials[J]. 2003, 2 : 301-306. 被引量:1
  • 10Onda T, Shibuichi S, Satoh N, et al. Langmuir[J]. 1996,12:2125-2127. 被引量:1

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部