期刊文献+

一类变式Boussinesq系统的行波解 被引量:1

Travelling Wave Solutions of a Variant of the Boussinesq System
原文传递
导出
摘要 本文研究一类变式Boussinesq系统η_t+((1+αη)w)_x-β/6w_(xxx)=0,w_t+αww_x+η_x-β/2w_(xxt)=0,其中α和β都是正常数.许多逼近模型都能从此系统中被推导出,比如Boussinesq系统和两分量Camassa-Holm系统等.本文利用平面动力系统方法研究它的行波解及相图,得到了孤立波解,广义扭波解,广义反扭波解,紧孤立波解和周期波解,并给出了这些解的数值模拟. This paper considers a variant of the Boussinesq system ηt+(1+αη)ω)x-β/6ωxxx=0,ωt+αωωx+β/2ωxxt=0, where α and β are positive constants. A lot of approximate moadls llKe the Doussinesq system and the two-component Camassa-Holm system can be derived from this system. We here study its travelling wave solutions and analyze its phase portraits by applying the qualitative analysis methods of planar autonomous systems. We obtain its solitary wave solutions, kink-like or antikink-like wave solutions, compacton-like wave solutions and periodic wave solutions. Some numerical simulations of its solutions are also given.
出处 《应用数学学报》 CSCD 北大核心 2012年第6期1099-1112,共14页 Acta Mathematicae Applicatae Sinica
基金 教育部留学回国人员科研启动基金((2012)940) 广东省自然科学基金博士启动(S2011040000464) 广东省高等学校科技创新(2012KJCX0074) 湛江师范学院博士专项基金(ZL1101)资助项目
关键词 孤立波解 广义(反)扭波解 紧孤立波解 周期波解 solitary wave solutions kink-like or antikink-like wave solutions compacton-like wave solutions periodic wave solutions
  • 相关文献

参考文献4

二级参考文献16

  • 1GUO Boling & LIU Zhengrong Institute of Applied Physics and Computational Mathematics, Beijing 100088, China,School of Mathematical Sciences and Center for Nonlinear Science Studies, South China University of Technology, Guangzhou 510640, China.Two new types of bounded waves of CH-γ equation[J].Science China Mathematics,2005,48(12):1618-1630. 被引量:12
  • 2ZHANG WenlingDepartment of Mathematics and Physics, National Natural Science Foundation of China, Beijing 100085, China.General expressions of peaked traveling wave solutions of CH-γ and CH equations[J].Science China Mathematics,2004,47(6):862-873. 被引量:10
  • 3Chen, M., Liu, S. Q., Zhang, Y. J.: A 2-component generalization of the Cammassa-Holm equation and its solution. Letters in Math. Phys., 75, 1-15 (2006) 被引量:1
  • 4Cammasa, R., Holm, D. D.: An integrable shallow water equation with peaked solution. Phys. Rev. Lett., 71, 1161-1164 (1993) 被引量:1
  • 5Cammasa, R., Holml D. D., Hyman, J. M.: A new integrable shallow water equation. Adv. Appl. Mech., 31, 1-33 (1994) 被引量:1
  • 6Li, J. B., Dai, H. H.: On the Study of Singular Nonlinear Travelling Wave Equations, Dynamical Approach, Science Press, Beijing, 2007 被引量:1
  • 7Li, J. B., Wul J. H.,Zhu, H. P.: Travelling waves for an integrable higher order kdV type wave equations. International Journal of Bifurcation and Chaos, 16(8), 2235-2260 (2006) 被引量:1
  • 8Li, J. B., Chen, G. R.: On a class of singular nonlinear traveling wave equations. International Journal of Bifurcation and Chaos, 17(11), (2007) 被引量:1
  • 9Perko, L.: Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1991 被引量:1
  • 10Byrd, P. F., Fridman, M. D.: Handbook of Elliptic Integrals for Engineers and Sciensists, Springer, Berlin, 1971 被引量:1

共引文献23

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部