期刊文献+

基于原子轨道理论的社区用户排序 被引量:1

User ranking algorithm based on atomic orbital theory
原文传递
导出
摘要 对虚拟社区中的用户进行排序并识别其中存在的特殊用户(如网络水军)是件有意义的工作。在原子轨道理论的启发下,该文将用户在虚拟社区中的活动"想象"为一种"特殊粒子"的运动,设计了计算用户"能量"的方法,进而根据用户能量等级对用户排序、识别特殊用户。通过分析仿真系统在不同条件下生成的数据,该文验证了用户能量计算方法的可行性、基于用户能量的用户排序方法的有效性。实验结果表明:该文方法的平均召回率大于82%。 Virtual communities need to rank users so as to identify special users as Internet mercenaries.Atomic orbital theory is used here to compare user activities in a virtual community to the motion of a particle.The method calculates the user energy which is used to rank and identify users.Simulations verify the feasibility of this method for user ranking with an identification rate greater than 82%.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第10期1446-1452,共7页 Journal of Tsinghua University(Science and Technology)
关键词 虚拟社区 用户排序 用户识别 原子轨道理论 virtual community user ranking user identification atomic orbital theory
  • 相关文献

参考文献16

  • 1YANG Tianbao,JIN Rong,CHI Yun,et al.Combining linkand content for community detection:A discriminativeapproach[C] //Proceedings of the ACM SIGKDD Conference onKnowledge Discovery and Data Mining.Paris,France:ElderResearch Inc.2009:927-935. 被引量:1
  • 2LIU Xiaozhong,Vadim B.Computational community interestfor ranking[C] //Proceedings of Conference on Informationand Knowledge Management.Hong Kong,China:University of Hong Kong,2009:245-253. 被引量:1
  • 3Gulbahce N,Lehmann S.The art of community detection[J].Bioessays,2008,30(10):934-938. 被引量:1
  • 4Yao Y Y.Measuring retrieval effectiveness based on userpreference of documents[J].Journal of the AmericanSociety for Information Science,1995,46(2):133-145. 被引量:1
  • 5Yongpisanpopp P,Ohira M,Matsumoto K I.Communitysearch:A collaborative searching web application with a userranking system[J].Lecture Notes in Computer Science,2011,6778:378-386. 被引量:1
  • 6Ibrahim U,Bruce C.User oriented tweet ranking:Afiltering approach to microblogs[C] //Proceedings of the20th ACM International Conference on Information andKnowledge Management.Glasgow,UK:University ofGlasgow,2011:2261-2264. 被引量:1
  • 7TANG Jian,LIU Ning,YAN Jun,et al.Learning to rankaudience for behavioral targeting in display ads[C] //Proceedings of the 20th ACM International Conference onInformation and Knowledge Management.Glasgow,UK:University of Glasgow,2011:605-610. 被引量:1
  • 8SHANG Mingsheng,ZHANG Zike,ZHOU Tao,et al.Collaborative filtering with diffusion-based similarity ontripartite graphs[J].Physica A,2010,389:1259-1264. 被引量:1
  • 9Yuto Y,Tsubasa T,Toshiyuki A,et al.TURank:Twitteruser ranking based on user-tweet graph analysis[C] //Proceedings ofthe 11th International Conference onWeb Information System Engineering.Hong Kong,China:City University of Hong Kong,2010:240-253. 被引量:1
  • 10安雨帆.论我国网络非理性传播的特殊成因[J].湖南大众传媒职业技术学院学报,2011,11(6):60-63. 被引量:4

二级参考文献45

共引文献19

同被引文献106

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部