期刊文献+

基于区间分析无迹粒子滤波的移动机器人SLAM方法 被引量:5

SLAM Method for Mobile Robot Based on Interval Analysis Unscented Particle Filter
下载PDF
导出
摘要 移动机器人同时定位与地图创建算法SLAM中,非线性系统线性化处理和雅可比矩阵计算导致运算量大、系统状态估计精度较低。为此提出了一种基于区间分析的无迹粒子滤波同时定位与地图创建的方法。利用基于区间分析的区间粒子滤波进行位姿估计,降低了定位需要的粒子数;并采用无迹卡尔曼滤波更新地图中的特征,提高了地图创建的精度。在同等粒子数的情况下,改进了SLAM的精度,减少了运算时间,实验结果验证了方法的有效性。 In particle filter simultaneous localization and mapping method(SLAM) for mobile robots,linearization of nonlinear systems and derivation of the Jacobian matrices lead to large computing and system state estimation problem of low accuracy.To solve this problem,a SLAM method based on interval analysis and unscented particle filter was proposed.The number of particles was seriously reduced based on the interval analysis for pose estimation.The nature landmarks were updated through unscented Kalman filter to improve map estimation accuracy.This approach improved the state estimation accuracy and computational effort with a smaller number of particles than previous approaches.The results indicated that the proposed method was valid.
出处 《农业机械学报》 EI CAS CSCD 北大核心 2012年第10期155-160,共6页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金资助项目(51177040 60970038) 湖南省自然科学基金重点资助项目(09JJ8006)
关键词 移动机器人 同时定位与地图创建 粒子滤波器 区间分析 无迹卡尔曼滤波 Mobile robot SLAM Particle filter Interval analysis Unscented Kalman filter
  • 相关文献

参考文献14

  • 1Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics [ C ]//Proceedings of the 2nd Annual Conference on Uncertainty in Artificial Intelligence, UAI'86, 1986:435 - 461. 被引量:1
  • 2Murphy K P. Bayesian map learning in dynamic environments [ C ]//NIPS:Advances in Neural Information Processing System. Denver: Morgan-Kaufmann, 1999:1 015- 1021. 被引量:1
  • 3Wang C, Thorpe C, Thrun S,et al. FASTSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges [ C] // Proc. of the Int. Joint Conf. on Artificial Intelligence. Acapulco Mexico: Morgan Kaufmann, 2003:1 151 -1 156. 被引量:1
  • 4Abdallah F, Gning A, Bonnifait P. Box particle filtering for nonlinear state estimation using interval analysis [ J ]. Automatica, 2008,44( 3 ) :807 - 815. 被引量:1
  • 5Jaulin L, Kieffer M, Didrit O, et al. Applied interval analysis with examples in parameter and state estimation, robust control. and robotics [ M ]. London: Springer-Verlag, 2001. 被引量:1
  • 6Jaulin L, Walter E. Set inversion via interval analysis for nonlinear bounded error estimation [ J]. Automatiea, 1993,29 (4) : 1053 -1064. 被引量:1
  • 7Sunderhauf N, Lange S, Protzel P. Using the unscented Kalman filter in mono-SLAM with inverse depth parameterization for autonomous airship control[ C] //IEEE International Workshop on Safety, Security and Rescue Robotics, Piscataway, IEEE, 2007 : 1 - 6. 被引量:1
  • 8Fox D, Burgard W, Dellaert F. Monte carlo localization: efficient position estimation for mobile robots [ C]// Proceedings of the AAAI-99, Orlando, 1999:343 - 349. 被引量:1
  • 9周俊,张高阳,刘锐,金月.基于粒子滤波的苹果采摘机器人目标姿态估算[J].农业机械学报,2011,42(3):161-165. 被引量:17
  • 10司永胜,乔军,刘刚,高瑞,何蓓.苹果采摘机器人果实识别与定位方法[J].农业机械学报,2010,41(9):148-153. 被引量:75

二级参考文献47

共引文献156

同被引文献60

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部