期刊文献+

基于压缩感知信号重建的自适应空间正交匹配追踪算法 被引量:8

Adaptive Space Orthogonal Matching Pursuit Algorithm for Signal Reconstruction Based on Compressive Sensing
下载PDF
导出
摘要 传统的奈奎斯特采样定理规定采样频率最少是原信号频率的两倍,才能保证不失真的重构原始信号,而压缩感知理论指出只要信号具有稀疏性或可压缩性,就可以通过采集少量信号来精确重建原始信号。在研究和总结已有匹配算法的基础上,提出了一种新的自适应空间正交匹配追踪算法(Adaptive Space Orthogonal Matching Pursuit,ASOMP)用于稀疏信号的重建。该算法在选择原子匹配时采用逆向思路,引入正则化自适应和空间匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,最终实现了原始信号的精确重建。最后与传统MP和OMP算法进行了仿真对比,结果表明该算法的重建质量和算法速度均优于传统MP和OMP算法。 In order to well ensure reconstruction of the original signal,the traditional Nyquist sampling theorem requires that the sampling rate must be twice as much the highest frequency of the original signal at least,which causes a tremendous amount of calculation and the waste of resources.But the compressive sensing theory describes that we can reconstruct the original signal from a small amount of random sampling as long as the signal is sparse or compressible.Based on the research and summarization of the traditional matching algorithm,this paper presented a new adaptive space orthogonal matching pursuit algorithm(ASOMP) for the reconstruction of the sparse signal.This algorithm in-troduces an regularized adaptive and spatial matching principle for the choice of matching atoms with reverse thinking,which accelerates the matching speed of the atom and improves the accuracy of the matching,ultimately leads to exact reconstruction of the original signal.Finally,we compared the ASOMP algorithm with the traditional MP and OMP algorithm under the software simulation.Experimental results show that the ASOMP reconstruction algorithm is superior to traditional MP and OMP algorithm on the reconstruction quality and the speed of the algorithm.
作者 姚远 梁志毅
出处 《计算机科学》 CSCD 北大核心 2012年第10期50-53,共4页 Computer Science
基金 国家自然科学基金项目(60872158)资助
关键词 压缩感知 稀疏信号 匹配追踪 重建算法 Compressive sensing Sparse signal Matching pursuit Reconstruction algorithm
  • 相关文献

参考文献14

  • 1Candes E, Romberg J, Tao T. Robust uncertainty principles: Exa- ct signal reconstruction from highly incomplete frequency infor- mation[J]. IEEE Transactions on Information Theory, 2006,52 (2) :489-509. 被引量:1
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions on In- formation Theory, 2006,52 (4) : 1289-1306. 被引量:1
  • 3Baraniuk R G. Compressive sensing[J]. IEEE Signal Processing Magazine, 2007,24(4) : 118-120,124. 被引量:1
  • 4Candes E J. The restricted isometry property and its implications for compressed sensing[J]. Comptes Rendus Mathe-matique, 2008,346: 589-592. 被引量:1
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:709
  • 6Mallat S,Zhang Z. Matching pursuits with time-frequency dic- tionaries[J]. IEEE Transactions on Signal processing, 1993,41 (12) : 3397-3415. 被引量:1
  • 7Tropp J. Greed is good: algorithmic results for sparse approxi- mation[J]. IEEE Trans. Inf. Theory, 2004,50 ( 10 ) : 2231-2242. 被引量:1
  • 8Donoho D L,Tsaig Y, Drori I,et al. Sparse solution of underde- termined linear equations by stage orthogonal matching pursuit [R]. Technical report. 2006. 被引量:1
  • 9Needell D,Vershynin R. Uniform uncertainty principle and sig- nal recovery via regularized orthogonal matching pursuit [J]. Found. Comput. Math,2009,9(3):317-334. 被引量:1
  • 10Kim S J, Koh K, Lustig M, et al. Gorinevsky. A method for large-scale-regularized least-squares[J].IEEE Journal on Select- ed Topics in Signal Processing, 2007,4 ( 1 ) : 606-617. 被引量:1

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:70
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1

共引文献708

同被引文献77

  • 1王燕霞,张弓.一种改进的用于稀疏表示的正交匹配追踪算法[J].信息与电子工程,2012,10(5):579-583. 被引量:11
  • 2余继周,陈定昌.一种正交投影自适应波束形成快速算法[J].战术导弹技术,2006(1):76-78. 被引量:1
  • 3Donoho D L. Compressed sensing[ J]. IEEE Transactions on Infor- mation Theory, 2006, 52(4) : 1289 -1306. 被引量:1
  • 4Candes E J. Compressive sampling[ J]. In Proceedings of the Inter- national Congress of Mathematics, 2006,18 ( 3 ) : 1433 - 1452. 被引量:1
  • 5Candes E J, Romberg J, Tao T. Robust uncertainty principles [ J ]. exact signal reconstruction on Information theory, 2006,52 (2): 489 - 509. 被引量:1
  • 6Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[ J]. IEEE Transactions on Information Theory, 2007, 53( 12): 4655-4666. 被引量:1
  • 7Needell D, Tropp J A. CoSaMP: iterative signal recovery from in- complete and inaccurate samples [ J ]. Applied and Computational Harmonic Analysis, 2008, 26(3): 301 -321. 被引量:1
  • 8Baraniuk R. A lecture on compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007, 24(4):118- 121. 被引量:1
  • 9Donoho D, Tsaig Y. Extensions of compressed sensing [ J]. Signal Processing, 2006,86 (3) :533 - 548. 被引量:1
  • 10Mallat S, Zhang Z. Matching pursuit with time-frequency dictiona- ries[ J]. IEEE Transactions on Signal Processing, 1993,41 (12) : 3397 -3415. 被引量:1

引证文献8

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部