期刊文献+

基于有监督双正则NMF的静脉识别算法

Vein Recognition Algorithm Based on Supervised NMF with Two Regularization Terms
下载PDF
导出
摘要 为使提取的静脉图像特征具有较好的聚类特性以更利于正确识别,提出了一种基于有监督非负矩阵分解的识别算法。首先,对静脉图像进行分块处理,通过融合所有的子图像特征形成静脉的原始特征;其次,采用特征的稀疏性与聚类属性双正则项,对原始的非负矩阵分解模型进行改进;然后,基于梯度下降法对改进的非负矩阵分解模型进行求解,实现对原始特征的降维与优化;最后,利用最近邻算法对新的特征进行匹配,从而获得识别结果。实验结果表明,对于3种静脉样本数据库,所提识别算法的错误接受率与错误拒绝率分别可以达到0.02与0.03;此外,其2.89s的识别时间可以满足实时性要求。 In order to make the extracted vein feature have good clustering performance and thus be more conductive to correct identification,this paper proposed a recognition algorithm based on supervised Nonnegative Matrix Factorization(NMF).Firstly,vein image is divided into blocks,and the original vein feature can be acquired by fusing all sub image features.Secondly,the sparsity and clustering property of feature vectors are regarded as two regularization terms,and the original NMF model is improved.Then,gradient descent method is used to solve the improved NMF model,and feature optimization and dimension reduction can be achieved.Finally,by using nearest neighbor algorithm to match new vein features,the recognition results can be acquired.Experiment results show that the obtained false accept rate(FAR)and false reject rate(FRR)of the proposed recognition algorithm can be reached 0.02 and 0.03 respectively for three vein databases,in addition,the recognition time of 2.89 seconds can meet real-time requirement.
作者 贾旭 孙福明 李豪杰 曹玉东 JIA Xu;SUN Fu-ming;LI Hao-jie;CAO Yu-dong(School of Electronics & Information Engineering,Liaoning University of Technology,Jinzhou,Liaoning 121001,China;School of Software,Dalian University of Technology,Dalian,Liaoning 116024,China)
出处 《计算机科学》 CSCD 北大核心 2018年第8期283-287,共5页 Computer Science
基金 国家自然科学基金(61502216 61572244)资助
关键词 静脉识别 生物特征 非负矩阵分解 特征降维 稀疏表示 Vein recognition Biological feature Nonnegative Matrix Factorization Feature dimension reduction Sparse representation
  • 相关文献

参考文献4

二级参考文献49

  • 1季虎,孙即祥,姚伟.图像的小波矩[J].电路与系统学报,2005,10(6):132-136. 被引量:5
  • 2程丽敏.手背静脉识别技术及其应用[EB/OL].[2009.02.02].http://www.ibrchina.com/html/jishuzhongxin/jishulunwen/anquanfangfan/20090202/5537.html. 被引量:1
  • 3Wang L, Leedham G, Cho S Y. Infrared Imaging of Hand Vein Pat- terns for Biometric Purposes. Computer Vision, 2007, 1 ( 3/4 ) : 113 - 122. 被引量:1
  • 4Kumar A, Prathyusha K V. Personal Authentication Using HandVein Triangulation and Knuckle Shape. IEEE Trans on Image Processing, 2009, 18(9): 2127-2136. 被引量:1
  • 5Ladoux P O, Rosenherger C, Dorizzi B. Palm Vein Verification System Based on SIFT Matching//Proc of the 3rd International Confer- ence on Advances in Biometrics. Berlin, Germany, 2009:1290 - 1298. 被引量:1
  • 6Wang Kejun, Zhang Yan, Yuan Zhi, et al. Hand Vein Recognition Based on Multi-Supplemental Features of Multi-Classifier Fusion De- cision//Proc of the IEEE Intemational. Conference on Mechatronics and Automation. Luoyang, China, 2006 : 1790 - 1795. 被引量:1
  • 7Zhang Yibo, Li Qin, You J, et al. Palm Vein Extraction and Matc- hing for Personal Authentication // Proc of the 9th International Conference on Advances in Visual Information Systems. Berlin, Germany, 2007 : 154 - 164. 被引量:1
  • 8Wang .Jiangang, Yau W Y, Andy S, et al. Person Recognition by Fusing Palmprint and Palm Vein Images Based on "Laplacianpalm" Representation. Pattern Recognition, 2008, 41 (5) : 1514- 1527. 被引量:1
  • 9Khan M H, Subramanian R K, Khan N A M. Low Dimensional Representation of Dorsal Hand Vein Features Using Principle Component Analysis. Engineering and Technology, 2009, 37 : 1091 - 1097. 被引量:1
  • 10Hong Lin, Wan Yifei, Jain A. Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(8) : 777 -789. 被引量:1

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部