期刊文献+

基于聚类的空间数据可视化方法 被引量:3

Spatial data visualization based on cluster analysis
下载PDF
导出
摘要 首先介绍了目前空间数据可视化技术的研究内容和基本方法,对基于实体和基于区域两类常用方法进行了分析和总结。在此基础上提出了一种基于聚类的空间数据可视化方法,其基本思想是利用以Delaunay三角网的自适应空间聚类算法(ASCDT)为代表的空间聚类算法进行聚类分析,并获得结果描述参数,结合基本方法和参数特征设计专门用于聚类结果表达的可视化对象,进而实现空间数据的图上投影。最后对该类方法有待进一步探讨和改进的内容进行了展望。 Firstly, the paper introduced the researches and basic methods of spatial data visualization technology, and analyzed two common kinds of methods, namely entity-based and region-based. A clustering-based spatial data visualization method was proposed, which firstly made a cluster analysis of spatial data and got the description parameters of the result through the use of spatial clustering algorithms represented by algorithm ASCDT ( Adaptive Spatial Clustering algorithm based on Delaunay Triangulation). Secondly, it designed visual objects aimed at the cluster result by combining the basic visualization methods and the characteristics of the parameters. As a result, the mapping relationship was established. Finally, some issues that needed to be further studied and improved were discussed.
作者 张洋 王辰
出处 《计算机应用》 CSCD 北大核心 2013年第10期2981-2983,2988,共4页 journal of Computer Applications
关键词 空间数据 空间聚类 Delaunay三角网的自适应空间聚类算法 空间数据可视化 spatial data spatial cluster Adaptive Spatial Clustering algorithm based on Delaunay Triangulation(ASCDT) spatial data visualization
  • 相关文献

参考文献12

  • 1樊明辉..空间数据挖掘及其可视化系统若干关键技术研究[D].中国科学院遥感应用研究所,2006:
  • 2冯玉才,刘嘉.大量空间数据可视化的算法[J].计算机工程,2003,29(13):79-81. 被引量:5
  • 3DENG M, LIU Q, CHENG T, et al. An adaptive spatial clustering algorithm based on Delaunay triangulation[ J]. Computers, Environ- ment and Urban System, 2011, 35(4) : 320 - 332. 被引量:1
  • 4ANDRIENKO G, ANDRIENKO N, DYKES J, et al. Geovisualiza- tion of dynamics, movement and change: key issues and developing approaches in visualization research[ J]. Information Visualization, 2008, 7(3) : 173 - 180. 被引量:1
  • 5GONSCHOREK J, TYRALLOVA L. Geovisualization and geostatis- tics: a concept for the numerical and visual analysis of geographic mass data[M]. Berlin: Springer, 2012:208-219. 被引量:1
  • 6GORRICHA J, LOBO V. Improvements on the visualization of clusters in geo-referenced data using self-organizing maps ~ J ]. Computers & Geosciences, 2012, 43 : 177 - 186. 被引量:1
  • 7刘启亮..自适应空间聚类方法研究[D].中南大学,2011:
  • 8黄志敏..带约束条件的交互式空间聚类算法研究[D].中国农业大学,2007:
  • 9任永功,于戈.数据可视化技术的研究与进展[J].计算机科学,2004,31(12):92-96. 被引量:55
  • 10AO1DH E M, MARTINSOHN J. Geovisualization challenges of seascape genetics [ EB/OL ]. [ 2013- 01- 20 ]. http://www.researchgate, net/publication/228414861 _ Geovisualization _ Challenges of Seascape_Genetics. 被引量:1

二级参考文献38

  • 1Keim D A. Visual Support for Query Specification and Data Mining.Ph.D. Thesis,University of Munich, 1994-07. 被引量:1
  • 2Keim D A. Enhancing the Visual Clustering of Query-dependent Database Visualization Techniques Using Screen-filling Curves. Proc.Workshop on Database Issues for Data Visualization,Atlanta, GA,1995. 被引量:1
  • 3Keim D A, Kriegel H P. VisDB:Database Exploration Using Multidimentional Visualiztion. Computer Graphics & Application, 1994-09:40. 被引量:1
  • 4Keim D A, Kriegel H P. VisDB: A System for Visualizing Large Database. Proc.ACM SIGMOD lnt.Conf, on Management of Data.San Jose,CA, 1995:482. 被引量:1
  • 5Keim D A, Kriegel H P, Ankerst M. Recursive Pattem:A Technique for Visualizing Very Large Amounts of Data. Proc.Visualizat, ion 95, Atlanta,GA, 1995:279-286. 被引量:1
  • 6Ward M O. XmdvTool:Integrating Multiple Methods for Visualizing Multivariate Data. Proc.Visualization94,Washington,DC, 1994:326-336. 被引量:1
  • 7MacKinlay J D, Shneiderman B. Readings in Information Visualization: Using Vision to Think. NewYork:Academic Press/Morgan Kaufmann, 1999. 被引量:1
  • 8Keim D A, et al. State-of-the-Art Report Visual DataMining:[State of the Art Report]. Eurographics Conference 2002,Saarbrucken, Sep. 2002 被引量:1
  • 9Cleveland W S. Visualizing Data. AT&T Bell Laboratories, Murray Hill, NJ, Hobart Press, Summit NJ, 1993 被引量:1
  • 10Wright W. Information Animation Applications in the Capital Markets. In: Proc. Int. Symp. on Information Visualization, Atlanta, GA, 1995. 19-25 被引量:1

共引文献58

同被引文献51

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部