期刊文献+

基于AMCQPSO的测试流程优化方法研究

Study on optimization of testing procedure with AMCQPSO
下载PDF
导出
摘要 测试流程的优化是测试性方案优化工作的开始,关系到整个测试性设计的好坏。针对现有优化方法的不足,提出带自适应变异的质心量子粒子群算法(AMCQPSO),为粒子群增加质心粒子、建立收缩扩张系数的自适应调节机制,并且引入变异因子,提高算法收敛速度的同时,增强了全局搜索能力,有效地避免了"早熟"现象。最后通过实例验证了算法的有效性,能够实现测试流程的优化。 Optimization of testing procedure is which has close relation with testability design. methods, a means of AMCQPSO was given in the first step for optimizing testabihty prbject, In order to overcome the disadvantages of current this paper. This method designs the eentroid of particle swarm, builds up the adaptive model for shrink and expand coefficient and introduces mutation. These ameliorations effectively meet the expected requirements, not only speed up the convergence, but also gain the ability of all-around searching. This method was evaluated by some experiments and it is able to realize the optimization of testing procedure.
出处 《中国测试》 CAS 北大核心 2012年第5期84-87,共4页 China Measurement & Test
关键词 测试流程优化 自适应变异 质心量子粒子群 测试性设计 testing procedure optimization adaptive mutation centroid quantum particle swarm optimization testability design
  • 相关文献

参考文献9

二级参考文献41

  • 1虞斌能,连志刚,焦斌.动态惯性权重粒子群优化算法[J].上海电机学院学报,2008,11(3):169-172. 被引量:6
  • 2熊伟丽,徐保国,吴晓鹏,肖应旺.带变异算子的改进粒子群算法研究[J].计算机工程与应用,2006,42(26):1-3. 被引量:12
  • 3李宁,孙德宝,邹彤,秦元庆,尉宇.基于差分方程的PSO算法粒子运动轨迹分析[J].计算机学报,2006,29(11):2052-2060. 被引量:48
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks, IV, Perth Australia, 1995 : 1942-1948. 被引量:1
  • 5Eberhart R C, Kennedy J.A new optimizer using particle swarm theory[C]//Proc of the 6th International Symposium on Micro Machine and Human Science,Nagoya, Japan, 1995 : 39-43. 被引量:1
  • 6Higashitani M, Ishigame A, Yasuda K.Particle swarm optimization considering the concept of predator-prey behavior[C]//Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, July 16-2 1, 2006. 被引量:1
  • 7Shi Y, Eberhart R.Empirical study of particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation, 1999 : 1945-1950. 被引量:1
  • 8Das S,Koduru P,Gui M,et al.Adding local search to particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation,Vancouver,BC,Canada,Julyl6-21,2006. 被引量:1
  • 9Kennedy J, Eberhart R C.Particle swarm optimization[J].Institute of Electrical and Electronics Engineers, 1995( 11 ) : 1942-1948. 被引量:1
  • 10Elegbede C.Structural reliability assessment based on particles swarm optimization[J].Structural Safety, 2005,27(10) : 171-186. 被引量:1

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部