期刊文献+

改进的粒子群优化算法 被引量:9

Improved particle swarm optimization algorithm
下载PDF
导出
摘要 为改善基本粒子群的全局、局部搜索能力和收敛速度以及计算精度,基于经典PSO方法和量子理论基础之上,提出了一种改进的基于量子行为的PSO算法--cQPSO算法。新算法中,采用全同粒子系更新粒子位置,并引用混沌思想,对每个粒子进行混沌搜索,试图改善粒子的全局、局部搜索能力和收敛速度以及计算精度。对经典函数的测试计算表明,改进算法的性能优于经典的PSO算法、基于量子行为的PSO算法。 To improve full searching ability, local searching ability, convergence rate and calculating precision of elementary particle swarm, based on classical PSO algorithm and quanta theory, an improved PSO algorithm with quantum behavior--cQPSO algorithm is proposed. Identical particle system is introduced to update the position of particle and chaos thought is introduced to chaotic search every particle, accordingly improving the full searching ability, local searching ability, convergence rate and calculating precision of elementary particle swarm. The experimental results of classical function show that capability of improved algorithm is superior to classical PSO algorithm and PSO algorithm with quantum behavior.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第17期4074-4076,共3页 Computer Engineering and Design
基金 中北大学校级基金项目(2007-12-26)
关键词 粒子群优化算法 量子行为 混沌思想 局部搜索 全同粒子系 particle swarm optimization algorithm (PSO) quantum behavior chaos thought local searching identical particle system
  • 相关文献

参考文献9

  • 1黄继红.粒子群优化算法[EB].http://blog.sina.com.cn/s/blog_4b50b1010008ky.html,2007-03-25. 被引量:1
  • 2Coello Coello C A,Lechuga M S.MOPSO:a proposal for multiple objective particle swarm optimization[C]. IEEE Int Congress on Evolutionary Computation. Piscataway, NJ:IEEE Service Center,2002:1051-1056. 被引量:1
  • 3Shi Y C.Particle swarm optimization:developments,applications and resources[C].IEEE Int Congress on Evolutionary Computation.Piscataway, NJ:IEEE Service Center,2001:81-86. 被引量:1
  • 4Hu X,Shi Y, Eberhart R.Recent advances in particle swarm[C]: IEEE Int Congress on Evolutionary Computation. Piscataway, NJ:IEEE Service Center,2004:90-97. 被引量:1
  • 5汪定伟等编著..智能优化方法[M].北京:高等教育出版社,2007:309.
  • 6孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法[J].控制与决策,2006,21(3):263-266. 被引量:76
  • 7Leandro dos Santos Coelho.A quantum particle swarm optimizer with chaotic mutation operator[J].Chaos, Soliton and Fractals, 2008(37):1409-1418. 被引量:1
  • 8曾谨言.量子力学导论[M].2版.北京:北京大学出版社,2006:135-162. 被引量:1
  • 9康燕,孙俊,须文波.具有量子行为的粒子群优化算法的参数选择[J].计算机工程与应用,2007,43(23):40-42. 被引量:19

二级参考文献19

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3Kennedy J,Eberhart R C.Particle Swarm Optimization[A].IEEE Int Conf on Neural Networks[C].Perth Australia,1995:1942-1948. 被引量:1
  • 4Kennedy J.Small Worlds and Mega-minds:Effects of Neighborhood Topology on Particle Swarm Performance[A].Proc of the Congress on Evolutionary Computation[C].Washington DC,1999:1931-1938. 被引量:1
  • 5Gwo-Ching Liao,Ta-Peng Tsao.Application Embedded Chaos Search Immune Genetic Algorithm for Short-term Unit Commitment[J].Electric Power Systems Research,2004,71(2):135-144. 被引量:1
  • 6Angeline P J.Evolutionary optimization versus particle swarm optimization:philosophy and performance differences[C]//Lecture Notes in Computer Science 1447:Evolutionary Programming Ⅶ (1998).[S.l.]:Springer,1998:601-610. 被引量:1
  • 7Van den Bergh F,Engelbrecht A P.A new locally convergent particle swarm optimizer[C]//2002 IEEE International Conference on Systems,Man and Cybernetics,2002. 被引量:1
  • 8Clerc M.The swarm and queen:towards a deterministic and adaptive particle swarm optimization[C]//Proc CEC 1999:1951-1957. 被引量:1
  • 9Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc IEEE Int'l Conference on Neural Networks,Ⅳ.Piscataway,NJ:IEEE Service Center,1995:1942-1948. 被引量:1
  • 10Kennedy J.Small worlds and Mega-minds:effects of neighborhood topology on particle swarm performance[C]//Proc Congress on Evolutionary Computation 1999:1931-1938. 被引量:1

共引文献91

同被引文献85

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部