摘要
为了加快粒子群算法收敛速度,提出了质心粒子群优化算法(CPSO)。算法通过计算种群所有个体最优记录所构成的一个群体的质心,对种群个体当前的最优记录和全局最优记录进行比较、替换或更新等操作,从而加快算法的收敛速度。仿真实验表明,在求解相同精度的情况下,质心粒子群优化算法的收敛速度优于线性递减惯性权重粒子群优化算法(LDWPSO)。
In order to improve convergence speed of Particle Swarm Optimization(PSO),Centroid Particle Swarm Optimization Algorithm(CPSO) is presented.Computing the centroid of the population consisted of all individuals’best records,all the current individuals’best records and the global record are compared,replaced or updated by it.The method can mainly pick up convergence speed of the algorithm.Simulation results show that CPSO is much better than Linear Decreasing Weight PSO(LDWPSO)in convergence speed in the same accuracy of solution case.
出处
《计算机工程与应用》
CSCD
北大核心
2011年第3期34-37,共4页
Computer Engineering and Applications
基金
浙江省自然科学基金No.Y1100076
宁波市自然科学基金No.2009A610089~~
关键词
粒子群优化算法
质心
收敛速度
Particle Swarm Optimization(PSO) centroid convergence speed