期刊文献+

基于质心和自适应指数惯性权重改进的粒子群算法 被引量:3

Improved particle swarm optimization algorithm based on centroid and self-adaptive exponential inertia weight
下载PDF
导出
摘要 针对标准粒子群优化算法易出现早熟收敛及寻优精度低等缺陷,提出一种基于双质心和自适应指数惯性权重的改进粒子群算法(DCAEPSO)。算法使用粒子搜到的最优解和当前解构造加权的种群质心和最优个体质心,结合使用自适应指数惯性权重调整了速度更新公式。通过几个典型测试函数仿真及Friedman和Holm检验,实验结果显示DCAEPSO比其他粒子群算法寻优能力强。 This paper proposes a new Particle Swarm Optimization(PSO)algorithm based on two aspects of improvement in standard PSO to avoid the problems about premature convergence and low precision. It adjusts velocity updating formula by embedding self-adaptive exponential inertia weight function and two weighted centroids, which are called the population centroid and the best individual centroid. Through the simulation of several typical benchmark functions, Friedman's tests and Holm's tests, the experimental results indicate that the proposed algorithm not only has advantages of convergence property over standard PSO and some other modified PSO algorithms, but also outperforms other algorithms proposed in this paper for searching global optimal solution.
作者 陈寿文
出处 《计算机工程与应用》 CSCD 北大核心 2015年第5期58-64,250,共8页 Computer Engineering and Applications
基金 安徽省高校优秀青年人才基金项目(No.2012SQRL154) 滁州学院科研启动基金资助项目(No.2014qd007)
关键词 粒子群算法 质心 自适应指数惯性权重 particle swarm optimization algorithm centroid self-adaptive exponential inertia weight
  • 相关文献

参考文献18

  • 1Kennedy J,Eberhart R.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks,1995,4:1942-1948. 被引量:1
  • 2Liang J,Qin A,Suganthan P,et al.Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J].IEEE Transactions on Evolutionary Computations,2006,10(3):281-295. 被引量:1
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4汪永生,李均利.质心粒子群优化算法[J].计算机工程与应用,2011,47(3):34-37. 被引量:14
  • 5Shi Y,Eberhart R.Empirical study of particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation,1999,3:1945-1950. 被引量:1
  • 6Chen G,Huang X,Jia J,et al.Natural exponential inertia weight strategy in particle swarm optimization[C]//Proceedings of the 6th World Congress on Control and Automation,2006,1:3672-3675. 被引量:1
  • 7Bansal J,Singh P,Mukesh S,et al.Inertia weight strategies in particle swarm optimization[C]//Proceedings of the3rd World Congress on Nature and Biologically Inspired Computing,2011:640-647. 被引量:1
  • 8Clerc M,Kennedy J.The particle swarm explosion,stability,and convergence in a multidimensional complex space[J].IEEE Transactions on Evolutionary Computation,2002,6(1):58-73. 被引量:1
  • 9Eberhart R,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the Congress on Evolutionary Computation,2000:84-88. 被引量:1
  • 10Song S,Kong L,Cheng J.A novel particle swarm optimization algorithm model with centroid and its application[J].International Journal of Intelligent Systems and Applications,2009,1(1):42-49. 被引量:1

二级参考文献28

共引文献834

同被引文献36

  • 1刘莹,曹剑中,许朝晖,田雁,付同堂,王锋.基于灰度相关的图像匹配算法的改进[J].应用光学,2007,28(5):536-540. 被引量:41
  • 2YANG X S.Flower pollination algorithm for global optimization[C]//Proceeding of the 11th International Conference Unconventional Computation and Natural Computation.Berlin:Springer-Verlag,2012:240-249. 被引量:1
  • 3YANG X S,KARAMANOGLU M,HE X.Multi-objective flower algorithm for optimization[J].International Conference on Computations Science,2013,18:861-868. 被引量:1
  • 4EI-HENAWY I,ISMAIL M.An improved chaotic flower pollination algorithm for solving large integer programming problems[J].International Journal of Digital Content Technology & its Applications,2014,8(3):72-80. 被引量:1
  • 5SHARAWI M,EMARY E,SAROIT I A,et al.Flower pollination optimization algorithm for wireless sensor network lifetime global optimization[J].International Journal of Soft Computing and Engineering,2014,4(3):54-59. 被引量:1
  • 6ABDEL-RAOUF O,EI-HENAWY I,ABDEL-BASET M.A novel hybrid flower pollination algorithm with chaotic harmony search for solving sudoku puzzles[J].International Journal of Engineering Trends and Technology,2014,7(3):126-132. 被引量:1
  • 7PRATHIBA R,MOSES M B,SAKTHIVEL S.Flower pollination algorithm applied for different economic load dispatch problems[J].International Journal of Engineering and Technology,2014,6(2):1009-1016. 被引量:1
  • 8WANG R,ZHOU Y.Flower pollination algorithm with dimension by dimension improvement[J].Mathematical Problems in Engineering,2014(4):1-9. 被引量:1
  • 9LENIN K,REDDY B,KALAVATHI M.Shrinkage of active power loss by hybridization of flower pollination algorithm with chaotic harmony search algorithm[J].Control Theory and Informatics,2014,4(8):31-38. 被引量:1
  • 10NARAYANAN A,MOORE M.Quantum-inspired genetic algorithms[C]//Proceedings of IEEE International Conference on Evolutionary Computation.Nagoya:[s.n.],1996:61-66. 被引量:1

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部