期刊文献+

二次背包问题的贪婪量子进化算法求解 被引量:5

Greedy quantum-inspired evolutionary algorithm for quadratic knapsack problem
下载PDF
导出
摘要 二次背包问题是一种NP难组合优化问题,其精确算法求解难度大,针对该问题提出了一种量子进化算法求解方法。该算法采用一种相对贪婪修补算子,该修补算子不但考虑了二次背包问题的每一物品项价值,而且考虑了物品的协作价值,是一种动态修补算子。同时算法借鉴粒子群算法中粒子的运动方程,提出了一种具有三类知识学习能力的量子更新模式,使得量子进化中获得的知识更全面。通过对100个国际上大规模二次背包问题进行测试实验,验证了提出的求解算法比相应的其他启发式算法性能有较大提升。 The quadratic knapsack problem is a kind of NP-Hard problem. It is difficult to solve this problem with the exact algorithms. To solve the problem, a new quantum-inspired evolutionary algorithm was proposed. The algorithm had a dynamic repair operator which considered two types of value: the value of an object and the value of associated with an object in the knapsack problem. At the same time, an improved quantum updating mode using three kinds of knowledge based on particle swarm optimization algorithm was presented. In this updating mode, the quantum could get more comprehensive knowledge during evolution. Performance of the algorithm on 100 standard quadratic knapsack problem instances was compared with other heuristic techniques. Results showed that the proposed algorithm was superior to these techniques in many aspects.
作者 钱洁 郑建国
出处 《计算机集成制造系统》 EI CSCD 北大核心 2012年第9期2003-2011,共9页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(70971020)~~
关键词 二次背包问题 量子进化算法 贪婪修补算子 约束优化问题 quadratic knapsack problem quantum-inspired evolutionary algorithm greedy repair operator constrained optimization problem
  • 相关文献

参考文献21

  • 1GALLO G, HAMMER P L, SIMEONE B. Quadratic knap- sack problems[J]. Combinatorial Optimization, 1980,12(1): 132-149. 被引量:1
  • 2PISINGER D. The quadratic knapsack prohlem-a survey[J]. Discrete Applied Mathematics, 2007,155(5) : 623-648. 被引量:1
  • 3BILLIONNET A, FAYE A, SOUTIF E. A new upper bound for the 0-1 quadratic knapsack problem[J]. European Journal of Operational Research, 1999,112(3) : 664-672. 被引量:1
  • 4PISINGER D, RASMUSSEN A B, SANDVIK R. Solution of large-sized quadratic knapsack problems through aggressive re- duction[J]. Informs Journal on Computing, 2005,12(3) : 1-15. 被引量:1
  • 5WANG H, KOCHENBERGER G, XU Y. A note on optimal solutions to quadratic knapsack problems[J]. International Journal of Mathematical Modelling and Numerical Optimisati- on, 2010,1(4) : 344-351. 被引量:1
  • 6LITOCART L, NAGIH A, PLATEAU G. Reoptimization in Lagrangian methods for the 0-1 quadratic knapsack problem [J]. Computers Operations Research,2012,39(1):12-18. 被引量:1
  • 7HELMBERG C, RENDL F, WEISMANTEL IL A semidefi- nite programming approach to the quadratic knapsack problem [J]. Journal of Combinatorial Optimization, 2000, 4 ( 2 ) : 197-215. 被引量:1
  • 8谢涛,陈火旺,康立山.二次背包问题的一种快速解法[J].计算机学报,2004,27(9):1162-1169. 被引量:4
  • 9任燕,陈伟.可分离的二次背包问题的一种直接算法[J].上海大学学报(自然科学版),2010,16(4):387-393. 被引量:4
  • 10华中生,张斌.求解可分离连续凸二次背包问题的直接算法[J].系统工程与电子技术,2005,27(2):331-334. 被引量:7

二级参考文献77

共引文献82

同被引文献73

引证文献5

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部