期刊文献+

求解可分离连续凸二次背包问题的直接算法 被引量:7

Direct algorithm for separable continuous convex quadratic knapsack problem
下载PDF
导出
摘要 经典算法一般采用迭代过程求解连续凸二次背包问题,研究了求解可分离连续凸二次背包问题的直接算法。分析了可分离连续凸二次背包问题的结构特性,通过两个命题和两个定理研究了可分离连续凸二次背包问题的解的特性,提出了一种快速的求解该问题的直接算法。该算法能快速有效地求解可分离连续凸二次背包问题的最优解,算法的时间复杂度和空间复杂度都是O(n),都比经典算法节约很多。 Classical algorithms often solve continuous convex quadratic knapsack problem through iteration process, a direct algorithm is investigated for separable continuous convex quadratic knapsack problem. By analyzing the structural characteristics of the problem, and investigating the properties of the solutions by giving two propositions and two theorems, a direct algorithm for separable continuous convex quadratic knapsack problem is proposed, by which the optimal solution to the problem can be obtained fast and effectively. The computational complexity on time and space of the proposed algorithm are both O (n), which are both smaller than those of the classical algorithms.
作者 华中生 张斌
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第2期331-334,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(70172041) 安徽省自然科学基金(03042308)资助课题
关键词 凸二次背包问题 可分离问题 松弛 算法 convex quadratic knapsack problem separable problem relaxation algorithm
  • 相关文献

参考文献11

  • 1寇述舜..凸分析与凸二次规划[M],1994.
  • 2杨冰编著..实用最优化方法及计算机程序[M].哈尔滨:哈尔滨船舶工程学院出版社,1994:297.
  • 3Kellerer H, Pferschy U, Pisinger D. Knapsack problems [ M].Springer, 2004.349 - 88. 被引量:1
  • 4Rader Jr D J, Woeginger G J. The quadratic 0- 1 jbaosacj oribken with series-parallel support[ J]. Operations research letters, 2002, 30:159-166. 被引量:1
  • 5Caprara A, Pisinger D, Toth P. Exact solution of the quadratic knapsack problem [J]. INFORMS Journal on Cormputing, 1999,11:125- 137. 被引量:1
  • 6Bretthauer K M, Shetty B, Syam S. A brahch and bound algorithm for integer quadratic knapsack problems [J]. ORSA Journal on Computing,1995,7(1): 109 - 118. 被引量:1
  • 7Pardalos P M, Kovoor N. An akgiruthm for a singly constained class of Quadratic programs subject to upper and lower bounds [J]. Mathematical Programming, 1990,46:321 - 328, 被引量:1
  • 8Bretthauer K M, Shetty B. A pegging algorithm for the nonlinear resource allocation problem [J]. Computers & Operations Research, 2002,29:505 - 527. 被引量:1
  • 9Bretthauer K M, Ross A, Shetty B. Nonlinear integer programming for optimal allocation in stratified sampling [J]. European Journal of Operational Research, 1999,116:667- 680. 被引量:1
  • 10Bretthauer K M, Shetty B. Tne nonlinear knapsack problem-Algorithms and applications [J]. European Jouranl of Operational Research, 2002,138: 459 - 472. 被引量:1

同被引文献84

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部