期刊文献+

一类退化抛物方程全局吸引子的正则性

Asymptotic regularity of the global attractor for a class of degenerate parabolic equations
下载PDF
导出
摘要 考虑了一类退化抛物方程全局吸引子的正则性.当非线性项任意阶增长时,通过渐近先验估计方法和投影方法分别得到了这类方程在L^2(Ω),L^p(Ω),L^(2p-2)(Ω)(p≥2)及H_0^(1,a)(Ω)中全局吸引子的存在性. Asymptotic regularity of the global attractor was proved for a class of degenerate parabolic equations with a polynomially growing nonlinearity of arbitrary order, and the existence of a global attractor in L2(Ω),Lp(Ω),L(2p-2)(Ω)(p≥2) was established by asymptotic a priori estimate and in H01,a(Ω) by the projection method, respectively.
作者 李洪涛 马闪
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第4期108-114,共7页 Journal of Lanzhou University(Natural Sciences)
基金 国家自然科学基金项目(11031003)
关键词 退化抛物方程 全局吸引子 渐近先验估计 正则性 degenerate parabolic equation global attractor asymptotic priori estimate regularity
  • 相关文献

参考文献20

  • 1BABIN A V, VISHIK M I. Attractors of evolution equations[M]. Amsterdam: North-Holland Press, 1992: 131-146. 被引量:1
  • 2CHOLEWA J W, DLOTKO T. Global attractors in abstract parabolic problems[M]. London: Cam- bridge University Press, 2000: 103-105. 被引量:1
  • 3MARION M. Attractors for reactions-diffusion equa- tions: existence and estimate of their dimension[J], Appl Anal, 1987, 25(1/2): 101-147. 被引量:1
  • 4MARION M. Approximate inertial manifolds for reaction-diffusion equations in high space dimen- sion[J]. J Dynamic Differential Equations, 1989, 1(3): 245-267. 被引量:1
  • 5ZHONG Cheng-kui, YANG Mei-hua, SUN Chun-you. The existence of global attractors for the norm-to- weak continuous semigroup and application to the nonlinear reaction-diffusion equations[J]. J Differen- tial Equations, 2006, 223(2): 367-399. 被引量:1
  • 6MA Qing-feng, WANG Shou-hong, ZHONG Cheng- kui. Necessary and sufficient conditions for the ex- istence of global attractors for semigroups and ap- plications[J]. Indiana University Math, 2002, 51(6): 1 541-1 557. 被引量:1
  • 7ROBINSON J C. Infinite-dimensional dynamical sys- tems, an introduction to dissipative parabolic PDEs and the theory of global attractors[M]. London: Cambridge University Press~ 2001: 213-233. 被引量:1
  • 8TEMAM R. Infinite dimensional dynamical systems in mechanics and physics[M]. Berlin: Springer- Verlag, 1997: 82-104. 被引量:1
  • 9VALERO J, KAPUSTYAN A V. On the connectedness and asymptotic behaviour of solutions of reaction- diffusion systems[J]. J Math Anal Apply 2006, 23(1): 614-633. 被引量:1
  • 10CHEPYZHOV V V, VISHIK M I. Attractors for equations of mathematical physics[M]. Providence: American Mathematical Society, 2002: 38-45; 114-118. 被引量:1

二级参考文献14

  • 1Arrieta, J. M., Carvalho, A. N. & Rodriguez-Bernal, A., Parabolic problems with nonliear boundary conditions and critical nonlinearities, J. Diff. Equations, 156(1999), 376-406. 被引量:1
  • 2Babin, A. V. & Vishik, M. I., Attractors of Evolution Equations, NorthHolland, Amsterdam, 1992. 被引量:1
  • 3Ball, J. M., Strong continuous semigroups, weak solutions and the variation of constants formula, Proc.Amer. Math. Soc., 63(1977), 370-373. 被引量:1
  • 4Cholewa, J. W. & Dlotko, T., Global Attractors in Abstract Parabolic Problems, Cambridge University Press, 2000. 被引量:1
  • 5Cholewa, J. W., Local existence of solutions for 2m-th order semilinear parabolic equations, Demonstratio Math., 28(1995), 929-944. 被引量:1
  • 6Dlotko, T., Global solutions of reaction-diffusion equations, Funkcial. Ekvac., 30(1987), 31-43. 被引量:1
  • 7Hale, J. K., Asymptotic Behavior of Dissipative Systems, AMS Providence RJ, 1988. 被引量:1
  • 8Ma, Q. F., Wang, S. H. & Zhong, C. K., Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana Univ. Math. J., 51:6(2002), 1542-1558. 被引量:1
  • 9Marion, M., Attractors for reactions-diffusion equations: existence and estimate of their dimension,Appl. Anal., 25(1987), 101-147. 被引量:1
  • 10Robinson, J. C., Infinite-Dimensional Dynamical Systems-An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. 被引量:1

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部