摘要
In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).
In this paper we prove that the initial-boundary value problem for the nonlinear evolution equation ut = △u + λu - u^3 possesses a global attractor in Sobolev space H^k for all k≥0, which attracts any bounded domain of H^k(Ω) in the H^k-norm. This result is established by using an iteration technique and regularity estimates for linear semigroup of operator, which extends the classical result from the case k ∈ [0, 1] to the case k∈ [0, ∞).
基金
Sponsored by the NSFC(10571142,10771167)