期刊文献+

高阶Allen-Cahn系统吸引子的正则性 被引量:1

Regularity of Attractors for Higher-order Allen-Cahn System
下载PDF
导出
摘要 研究高阶Allen-Cahn系统的吸引子的正则性.首先,利用线性算子的正则性估计证明Allen-Cahn系统的解在H^(γ)(γ≥0)空间中有界;然后,通过迭代方法得到方程在H^(γ)(γ≥0)空间中存在有界的吸收集.进而根据分数次空间吸引子存在性定理得到在H^(γ)(γ≥0)空间中全局吸引子的存在性. In this paper,the regularity of global attractors for higher-order Allen-Cahn system is investigated.Firstly,it is proved that the solution of higher-order Allen-Cahn system is bounded in H^(γ)(γ≥0)spaces through regularity estimates for the linear semigroups.Secondly,the bounded absorbing set of the system is presented in H^(γ)(γ≥0)spaces by using iteration procedures.Finally,it is shown that the higher-order Allen-Cahn system possesses a global attractor in H^(γ)spaces forγ≥0 from existence theorem of global attractor in fractional order spaces.
作者 潘娇娇 罗宏 PAN Jiaojiao;LUO Hong(School of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,Sichuan)
出处 《四川师范大学学报(自然科学版)》 CAS 2021年第3期323-328,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11701399)。
关键词 全局吸引子 正则性 算子半群 插值不等式 global attractors regularity semigroup of operator interpolation inequality
  • 相关文献

参考文献2

二级参考文献25

  • 1徐红英,张慧.关于一类非局部抛物方程组解的爆破速率估计[J].四川师范大学学报(自然科学版),2006,29(1):71-73. 被引量:3
  • 2王霞,高付清.MODERATE DEVIATIONS FROM HYDRODYNAMIC LIMIT OF A GINZBURG-LANDAU MODEL[J].Acta Mathematica Scientia,2006,26(4):691-701. 被引量:2
  • 3Allen S M,Cahn J W.A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metall,1979,27:1084-1095. 被引量:1
  • 4Rubinstein J,Sternberg P,Keller J B.Fast reaction,slow diffusion and curve shortening[J].SIAM J Appl Math,1989,49:116-133. 被引量:1
  • 5Fife P C.Dynamics for internal layers and diffusive interfaces[C]//CBMS-NSF Regional Conf Ser Appl Math.Philadelphia:SIAM,1988. 被引量:1
  • 6Bronsard L,Kohn R.Motion by mean curvature as the singular limit of Ginzburg-Landau model[J].J Diff Eqns,1991,90:211-237. 被引量:1
  • 7de Mottoni P,Schatzman M.Development of interfaces in R^n[J].Proc Roy Soc Edinb,1990,A116:207-220. 被引量:1
  • 8de Mottoni P,Schatzman M.Geometrical evolution of developed interfaces[J].Trans Am Math Soc,1995,347:1533-1589. 被引量:1
  • 9Chen X.Generation and propagation of interfaces for reaction-diffusion equations[J].J Diff Eqns,1992,96:116-141. 被引量:1
  • 10Evans L C,Soner H M,Souganidis P M.Phase transitions and generalized motion by mean curvature[J].Commun Pure Appl Math,1992,45:1097-1123. 被引量:1

共引文献4

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部