期刊文献+

一种无线传感器信号衰减自适应测距模型 被引量:5

An adaptive ranging model based on energy distance loss of wireless sensors
下载PDF
导出
摘要 使用无线传感器作为路标实现机器人定位具有许多优势,但无线传感器与机器人之间的距离测量存在易受环境干扰的缺点.为了解决这一难题,在对无线传感器射频信号衰减原理分析的基础上,基于在线学习的方法为无线传感器路标建立自适应的信号衰减测距模型.由于模型学习过程是在线进行的,环境因素对无线信号传播衰减的影响被包含在模型中,故此测距模型提高了对无线信号传播环境的适应能力.此外,把路标的身份作为测距模型的输入,从而区分了传感器个体的差异,实验结果证明了这种建模方法在提高无线传感器测距精度方面的有效性. Using wireless sensors as landmarks for mobile robot localization has many advantages,but the process of measuring the distance between the robot and wireless sensor is susceptible to environmental disturbance.To solve this difficult problem,the radio frequency signal decay theory was analyzed,and an adaptive signal decay range model was established for wireless landmarks based on the online learning method.The model learning was completed online,so the effect of the environmental factors on the decay of wireless signal transmission was included in the online modeling process;correspondingly,the adaptive ability of the model was improved.In addition,the identity numbers of different wireless landmarks were also input into the artificial neural network model so that differences among certain sensors were considered.Experiments show that the proposed modeling method is effective for improving wireless sensor ranging precision.
出处 《智能系统学报》 北大核心 2012年第3期214-219,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61175083 61175085) 天津市自然科学基金资助项目(10JCYBJC07600)
关键词 机器人 无线传感器 信号衰减 自适应测距模型 robot wireless sensors energy distance loss adaptive ranging model
  • 相关文献

参考文献11

二级参考文献68

  • 1陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:60
  • 2蔡自兴,王勇,王璐.基于角点聚类的移动机器人自然路标检测与识别[J].智能系统学报,2006,1(1):52-56. 被引量:7
  • 3Lopez D G, Sjo K, Paul C, et al. Hybrid laser and vision based object search and localization[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: 1EEE, 2008: 2636-2643. 被引量:1
  • 4Hahnel D, Burgard W, Fox D, et al. Mapping and localization with RFID technology[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2004: 1015-1020. 被引量:1
  • 5Cho K, Kang M S, Park S, et al. Development of indoor localization system using ultrasonic sensors[C]//International Symposium on Robotics. Seoul: ISR, 2008: 211-215. 被引量:1
  • 6Priyantha N B, Chakraborty A, Balakrishnan H. The cricket location-support system[C]//Sixth Annual International Conference on Mobile Computing and Networking. New York, USA: ACM, 2000: 32-43. 被引量:1
  • 7[1]Borenstein J, Everett H R, Feng L, Wehe D. Mobile Robot Positioning: Sensors and Techniques, Journal of Robotic Systems, 1997,14(4): 231-249 被引量:1
  • 8[2]Puneet Goel, Stetgios I. Roumeliotis and Gaurav S Sukhatme. Robust Localization Using Relative and Absolute Position Estimates. Proceeding of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999: 1134-1140 被引量:1
  • 9[3]Claude Pegard, El Mustapha Mouaddib. A Mobile Robot Using a Panoramic View. Proceeding of the 1996 IEEE International Conference on Intelligent Robotics and Automation, 1996: 89-94 被引量:1
  • 10[4]Nishizawa T, Ohya A, yuta S. An Implementation of On-board Position Estimation for a Mobile Robot-EKF Based Odometry and Laser Reflector Landmarks Detection. Proceeding of the 1995 IEEE International Conference on Robotics and Automation, 1995, 395-400 被引量:1

共引文献96

同被引文献37

  • 1燕宗伟,李平,郎宪明,刘浩宇.基于遗传算法优化BP神经网络的管道泄漏检测方法研究[J].当代化工,2020,49(1):216-220. 被引量:19
  • 2王珊珊,殷建平,蔡志平,张国敏.基于RSSI的无线传感器网络节点自身定位算法[J].计算机研究与发展,2008,45(z1):385-388. 被引量:30
  • 3Maxwell A,Lal S.Technological innovations in managing challenges of supply chain management.Universal Journal of Industrial and Business Management,2013,1(2):62-69. 被引量:1
  • 4Zhao Y Y,Liu Y H,Lionel M.Ni.VIRE:Active RFID-based localization using virtual reference elimination.International Conference on Parallel Processing(ICPP 2007),Xi'an,2007. 被引量:1
  • 5Bouet M,Pujolle G.L-VIRT:Range-free 3-D localization of RFID tags based on topological constraints.Computer Communications,2009,32(13-14):1485-1494. 被引量:1
  • 6Samers S,Zahi S N.A standalone RFID indoor positioning system using passive tags.IEEE Transactions on Industrial Electronics,2011,58(5):1961-1970. 被引量:1
  • 7Park S,Hashimoto S.Autonomous mobile robot navigation using passive RFID in indoor envi-ronment.IEEE Transactions on Industrial Electronics,2009,56(7):2366-2373. 被引量:1
  • 8Sangdo P,HongchuI L.Self-recognition of vehicle position using UHF passive RFID tags.IEEE Transactions on Industrial Electronics,2013,60(1):226-234. 被引量:1
  • 9Brchan J L,Zhao Z L,Wu J Q.A real-time RFID localization experiment using propagation models.IEEE International Conference on RFID.Orlando,FL,USA,2012,141-148.. 被引量:1
  • 10Xiao Z,Ye S J,Zhong B,Sun C X.BP neural network with rough set for short term load forecasting.Expert Systems with Applications,2009,36(1):273-279. 被引量:1

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部