期刊文献+

一种低计算量移动机器人自定位方法 被引量:1

Self-localization Algorithm of Mobile Robot with Lower Computational Cost
下载PDF
导出
摘要 移动机器人定位问题就是通过传感器数据来确定自己的位姿。本文介绍了几种基于概率的自定位算法。针对蒙特卡罗定位算法需要精确概率模型以及计算量大的问题,本文提出了一种均匀蒙特卡罗算法。该算法假设运动模型和感知模型都是均匀分布的,采样点在运动过程中不变,而且不需要精确的概率模型,计算量小,稳定性高。试验表明,该算法能在室内环境下很好的对机器人定位。 Mobile robot localization is the problem of determining a robot's pose relative to its environment from sensor data. This article presents several probabilistic localization algorithms. Uniform Monte Carlo Localization (UMCL) is required to solve lower computational cost and handling the unpredictable probability distribution models. UMCL uses only uniform distribution to represent probability distributions .It is robustness with lower computation cost. Experiment results show that UMCL is in good use of mobile robot localization.
出处 《计算机与数字工程》 2005年第7期53-55,59,共4页 Computer & Digital Engineering
关键词 移动机器人 马尔可夫定位 蒙特卡罗定位 均匀蒙特卡罗 Mobile robot,Markov localization,Monte Carlo localization,Uniform Monte Carlo
  • 相关文献

参考文献6

二级参考文献21

  • 1[1]Borenstein J, Everett H R, Feng L, Wehe D. Mobile Robot Positioning: Sensors and Techniques, Journal of Robotic Systems, 1997,14(4): 231-249 被引量:1
  • 2[2]Puneet Goel, Stetgios I. Roumeliotis and Gaurav S Sukhatme. Robust Localization Using Relative and Absolute Position Estimates. Proceeding of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1999: 1134-1140 被引量:1
  • 3[3]Claude Pegard, El Mustapha Mouaddib. A Mobile Robot Using a Panoramic View. Proceeding of the 1996 IEEE International Conference on Intelligent Robotics and Automation, 1996: 89-94 被引量:1
  • 4[4]Nishizawa T, Ohya A, yuta S. An Implementation of On-board Position Estimation for a Mobile Robot-EKF Based Odometry and Laser Reflector Landmarks Detection. Proceeding of the 1995 IEEE International Conference on Robotics and Automation, 1995, 395-400 被引量:1
  • 5[5]Margrit Betke, Leonid Gurvits. Mobile Robot Location Using Landmarks. IEEE Transaction on Robotics and Automation, 1997,13(2): 251-263 被引量:1
  • 6JENSFELT P, KRISTENSEN S. Active global localization for a mobile robot using multiple hypothesis tracking [ J].IEEE Trans Robotics Automation, 2001, 17(5) :748 - 760. 被引量:1
  • 7FOX D, BURGARD W, THRUN S. Active markov localization for mobile robots [J ]. Robotics and Autonomous Systems, 1998, 25 : 195 - 207. 被引量:1
  • 8DELLAERT F, FOX D, BURGARD W, et al. Monte Carlo localization for mobile robots [ J ]. IEEE ICRA,1999, 5 : 1322 - 1328. 被引量:1
  • 9Borenstein J, Everett H R, Feng L. Navigating mobile robots:sensors and techniques[M].Wellesley, MA:A K Peters Ltd,1996. 被引量:1
  • 10Gasós J, Rosetti A. Uncertainty representation for mobile robots:Perception, modeling and navigation in unknown environments[J].Fuzzy Sets and Systems,1999,107:1-24. 被引量:1

共引文献42

同被引文献6

  • 1倪巍,王宗欣.一种室内无线网络多用户自适应定位及跟踪算法[J].通信学报,2005,26(1):66-73. 被引量:10
  • 2W. H. Foy. Position location solutions by Taylor series estilnation[J]. IEEE Trans, Aerospace and Electronic Systems, 1976,12 (2) : 187--194. 被引量:1
  • 3M. K. Steven. Fundamentals of Statictical Signal Processing[M]. Estimation Theory,2003. 被引量:1
  • 4M. P. Wylie,J. Holtzman. The non--line of sight problem in mobile location estimation[C]. Universal Personal Communications. 1996,(2): 827--831. 被引量:1
  • 5P. Chen. A non-line-of-sight error mitigation algorithm in location estimation[C]. Wireless Communications and Networking Conference,1999,(1) : 316-320. 被引量:1
  • 6D. Fox,W. Burgard,F. Dellaert. Monte carlo localization: Efficient position estimation for mobile robots[C]. In Proeeedings of the National Conference on Artificial intelligence, 1999. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部