期刊文献+

具有非线性发生率的传染病模型性态分析 被引量:10

Behavior of an Epidemic Model of Ecologically Transmissible Diseases with Nonlinear Incidence
下载PDF
导出
摘要 研究了具有非线性发生率的SIR传染病模型.该发生率满足一定条件.通过对模型的分析,发现模型参数在满足某些值时,模型会发生后向分支现象.此时R0=1不能作为疾病是否消亡的阈值条件.在拐点处的临界值被作为新的阈值.分析了模型发生后向分支的条件,得到了无病平衡点和地方病平衡点稳定的充分条件.主要结论均通过数值模拟加以验证. An SIR epidemic model with non-linear incidence rate which subject to a few general conditions is investigated. It is found that the backfoward bifurcation occurs for the model if some parameters are specific values. To drive the basic reproduction number less than the unity is not enough to eradicate the disease, and the critical value at the turning point becomes a new threshold. Some sufficient conditions for the disease-free equilibrium and the endemic equilibrium being stable are also obtained. The main results are illustrated by numerical simulations.
作者 张少辉 靳祯
机构地区 中北大学理学院
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2012年第4期353-357,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金(60771026) 山西省青年科技基金(2007021006)
关键词 非线性发生率 SIR模型 后向分支 平衡点 稳定性 nonlinear incidence rate SIR model backward bifurcation equilibria stability
  • 相关文献

参考文献13

  • 1Murray J D. Mathematical Biology [M]. 2nd ed. Beijing: Springer Overlag, 1998. 被引量:1
  • 2Hethcote H W. The mathematics of infectious disease [J]. SIAM Rev., 2000, 42: 599-653. 被引量:1
  • 3Capasso V, Serio G. A generalization of the Kermack- MeKendrick deterministic epidemic model[J]. Math. Biosci, 1978, 42: 43-61. 被引量:1
  • 4Liu W M, Hethcote H W, behavior of epidemiological incidence rates[J]. J. Math. 380. Levin S A. Dynamical models with nonlinear Biol., 1987, 25: 359-. 被引量:1
  • 5Liu W M, Levin S A, Iwasa Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. J. Math. Biol, 1986, 23; 187-204. 被引量:1
  • 6Ruana Shigui, Wang Wendi. Dynamical behavior of an epidemic model with a nonlinear incidence rate [J]. Journal of Differential Equations, 2003, 188,135-163. 被引量:1
  • 7Zhou Yugui, Xiao Dongmei, Li Yilong. Bifurcations of an epidemic model with non-monotonic incidence rate of saturated mass action[J]. Chaos, Solitons and Fractals, 2007, 32: 1903-1915. 被引量:1
  • 8Alexander M E, Moghadas epidemic model with a incidence [J]. Mathematical 75-96. S M. Periodicity in an generalized non-linear Biosciences, 2004, 189:. 被引量:1
  • 9Kupiec P. Techniques for verifying the accuracy of risk measurement models[J]. Journal of Derivatives, 1995, 3: 73-84. 被引量:1
  • 10Zhang Xu, Liu Xianning. Backward bifurcation of an epidemic model with saturated treatment function[J]. J. Math. Anal. Appl, 2008, 348: 433-443. 被引量:1

同被引文献93

引证文献10

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部