期刊文献+

一类具有免疫反应的传染病模型的稳定性

The stability of a virus model with immune response
下载PDF
导出
摘要 建立了具有Holling II感染率且考虑免疫反应的动力学模型,讨论了系统解的非负性和有界性,最后通过构造适当的Lyapunov函数,应用La Salle不变原理,证明了无病平衡点是全局渐近稳定的. In this paper, we built a virus dynamics model with Holling 11 infection rate and immune response. We discussed the nonnegativity and boundedness of the solution. By constructing suitable Lyapunov functions and applying LaSalle' s invarianee principle we have proven that the infection - free equilibrium is globally asymptotically stable.
出处 《商丘师范学院学报》 CAS 2016年第9期12-14,共3页 Journal of Shangqiu Normal University
基金 国家青年科学基金资助项目(11301312) 山西大同大学青年科学基金资助项目(2014Q10) 山西大同大学青年科学基金资助项目(2015K5)
关键词 病毒感染 全局稳定性 免疫反应 李雅普诺夫函数 virus infection global stability immune response Lyapunov function
  • 相关文献

参考文献2

二级参考文献20

  • 1Bonhoeffer S, May R M, Shaw G M and Nowak M A. Virus dynamics and drug therapy[J]. Proc Natl Acad SciUSA, 1997(94): 6971-6976. 被引量:1
  • 2Nowak M A and May R M. Virus Dynamics:Mathematical Principles of Immunology and Virology[M]. New York: Oxford University Press, 2000. 被引量:1
  • 3Andrei Korobeinikov, Global properties of basic virus dynamics models[J]. Bulletin of Mathematical Biology, 2004(66): 879-883. 被引量:1
  • 4Wang K, Wen W, Pang H, Liu X. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica D, 2007(226): 197-208. 被引量:1
  • 5Canabarro A A, Gdra I M, Lyra M L. Periodic solutions and chaos in a non-linear model for the delayed cellular immune response[J]. Physica A, 2004(342): 234-241. 被引量:1
  • 6Nelson P W, Perelson A S. Mathematical analysis of a delay differential equation models of HIV-1 infection[J]. Math Biosci, 2002(179): 74-79. 被引量:1
  • 7Gang Huang, Wanbiao Ma, Yasuhiro Takeuchi. Global properties of virus dynamics model with Beddington-DeAngelis functional response[J]. Applied Mathematics Letters, in press. 被引量:1
  • 8Murray J D. Mathematical Biology [M]. 2nd ed. Beijing: Springer Overlag, 1998. 被引量:1
  • 9Hethcote H W. The mathematics of infectious disease [J]. SIAM Rev., 2000, 42: 599-653. 被引量:1
  • 10Capasso V, Serio G. A generalization of the Kermack- MeKendrick deterministic epidemic model[J]. Math. Biosci, 1978, 42: 43-61. 被引量:1

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部