期刊文献+

食饵有病的生态-流行病模型的稳定性分析 被引量:5

Stability Analysis of Eco-Epidemiologic Model With Disease in Prey
下载PDF
导出
摘要 研究一类具有双线性发生率和功能反应且食饵染病的生态-流行病模型的动力学行为.通过构造适当的Lyapunov函数,运用LaSalle不变集原理,获得保证系统的无捕食者无病平衡点、疾病主导平衡点、捕食者主导平衡点和正平衡点全局渐近稳定的阀值条件.通过疾病流行的阀值和捕食机制形成的阀值,以及疾病与捕食两者竞争占优的阀值,共同刻画生态-流行病系统的演变规律性. In this paper,the dynamical behaviors of the eco-epidemiologic model with double linearity incidence rate,functional response and disease in the prey are studied.By constructing suitable Lyapunov function and using LaSalle invariance principle,the global asymptotic stable threshold conditions of non-predator disease-free equilibrium,disease dominant equilibrium,predator dominant equilibrium and positive equilibrium in the system are obtained.The threshold of disease popularity,the threshold of formation of predation mechanism and the threshold of dominance of disease or predator in their competition depict the evolvement law of the eco-epidemiologic system.
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2017年第2期266-270,共5页 Journal of Huaqiao University(Natural Science)
基金 国家自然科学基金资助项目(11371306) 福建省教育厅自然科学基金资助项目(JA13370) 福建师范大学闽南科技学院青年骨干教师重点项目(MKQ201006)
关键词 生态-流行病模型 LYAPUNOV函数 LaSalle不变集原理 功能性反应 平衡点 全局稳定性 eco-epidemiologic model Lyapunov function LaSalle invariance principle functional response equilibrium point global stability
  • 相关文献

参考文献14

二级参考文献110

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2陈兰荪 井竹君.捕食者-食饵相互作用微分方程的极限环存在性和唯一性[J].科学通报,1984,24(9):521-523. 被引量:2
  • 3[1]Arnold E M. On Stability and Periodicity in Phosphorus Nutrient Dynamics. Quart. Appl. Math., 1980, 38:139-141 被引量:1
  • 4[2]Beretta E, Bischi G I, Solimano F. Stability in Chemostat Equations with Delayed Nutrient Recycling. J. Math. Biol., 1991, 85:99-111 被引量:1
  • 5[3]Bischi G I. Effects of Time Lags on Transient Characteristic of a Nutrient Cycling Model. Math. Biosci., 1992, 109:151-175 被引量:1
  • 6[4]Ruan Shigui. The Effect of Delays on Stability and Persistence in Plankton Models. Nonlinear Analysis, 1995, 24:575-585 被引量:1
  • 7[5]Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977 被引量:1
  • 8[6]Hale J K, Waltman P. Persistence in Infinite-dimensional Systems. SIAM J. Math. Appl., 1989, 20:388-395 被引量:1
  • 9[7]Cao Yulin, Freedman H I. Global Attractivity in Time-delay Predator-prey Systems. J. Austral. Math. Soc. (Series B), 1996, 38:149-162 被引量:1
  • 10I.esliePH.Somefunthernotesontheuseofmatricesinpopulationmathematie[J].Biometrika,1948,35(1):213-245. 被引量:1

共引文献285

同被引文献22

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部