摘要
研究一类具有双线性发生率和功能反应且食饵染病的生态-流行病模型的动力学行为.通过构造适当的Lyapunov函数,运用LaSalle不变集原理,获得保证系统的无捕食者无病平衡点、疾病主导平衡点、捕食者主导平衡点和正平衡点全局渐近稳定的阀值条件.通过疾病流行的阀值和捕食机制形成的阀值,以及疾病与捕食两者竞争占优的阀值,共同刻画生态-流行病系统的演变规律性.
In this paper,the dynamical behaviors of the eco-epidemiologic model with double linearity incidence rate,functional response and disease in the prey are studied.By constructing suitable Lyapunov function and using LaSalle invariance principle,the global asymptotic stable threshold conditions of non-predator disease-free equilibrium,disease dominant equilibrium,predator dominant equilibrium and positive equilibrium in the system are obtained.The threshold of disease popularity,the threshold of formation of predation mechanism and the threshold of dominance of disease or predator in their competition depict the evolvement law of the eco-epidemiologic system.
出处
《华侨大学学报(自然科学版)》
CAS
北大核心
2017年第2期266-270,共5页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金资助项目(11371306)
福建省教育厅自然科学基金资助项目(JA13370)
福建师范大学闽南科技学院青年骨干教师重点项目(MKQ201006)