期刊文献+

一种基于改进信息熵的协同过滤算法 被引量:5

A Collaborative Filtering Algorithm Using Improved Entropy-based Similarity Measures
下载PDF
导出
摘要 协同过滤算法是个性化推荐中应用最成功的技术之一,计算用户间的相似性是协同过滤算法的关键。而传统的相似性度量方法在数据稀疏和小用户交集时性能严重下降,因此本文提出了一种基于改进信息熵的相似性度量方法(NWDE),充分考虑了数据稀疏环境的特点,在计算用户间的相似性时综合考虑了用户间的交集大小以及评分差异的大小,使其得分更加真实。实验结果表明,在数据稀疏和小用户交集的情况下,该算法的推荐精度比传统方案取得了显著的改善。 Similarity measurement is the most crucial component to determine recommendation accuracy in memory-based collaborative filtering algorithms. Most existing calculations of similarities suffer from data sparsity and poor prediction quality problems. This paper proposed a novel similarity measures based on improved entropy (NWDE), which consider the features of data sparsity. The entropy is computed by the difference of two users' ratings, and we also consider the size of their common rated items, the size is bigger, the weight of their similarity is higher. The algori'thm effectively solves the problem of the inaccuracy of similarities in data sparsity or small size neighborhood environments. Experiments show that algorithm outperforms other state-of-the-art CF algorithms and it is more robust against data sparsity.
出处 《微计算机信息》 2012年第8期181-183,共3页 Control & Automation
关键词 协同过滤 相似性度量 信息熵 个性化推荐 Collaborative Filtering Similarity Measures Entropy Recommendation Systems
  • 相关文献

参考文献9

  • 1Gediminas Adomavicius and Alexander Tuzhilin, "oward the Next Generation of Recommender Systems: A Survey of the State- of-the-Art and Possible Extensions", IEEE Trans. on Knowledge and Data Engineering, vol. 17, no. 6, June 2005 , pp. 734-749. 被引量:1
  • 2Xiaoyuan Su, Taghi M. Khoshgoftaar. A Survey of Collaborative Filtering Techniques". Advances in Artificial Intelligence, Volume 2009, Article ID 421425. 被引量:1
  • 3E. Garcia, "Cosine Similarity and Term Weight Tutorial", http: //www.miislita.com/information -retrievahutorial/cosine -similarity - tutorial.html#Cosim. 2006. 被引量:1
  • 4J. Herlocker, J.A. Konstan , J. Riedl, An Empirical Analysis c Design Choices in Neighborhood-Based Collaborative Filterin Algorithms, Information Retrieval, v.5 n.4, p.287-310, Octobe 2002. 被引量:1
  • 5J. Herlocker, J.A. Konstan, L.G. Terveen and J.T. Riedl,Evaluating ollaborative filtering recommender systems, ACM Transactions on Information Systems (TOIS), v.22 n.1, p.5-53, January 2004. 被引量:1
  • 6M. Hao , K. Irwin and R.L. Michael, Effective missing data prediction for collaborative fihering, Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, July 23 -27, 2007, Amsterdam. 被引量:1
  • 7AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. Information Sciences; an International Journal, 2008, 178(1): 37-51. 被引量:1
  • 8王晓堤,王屾,赵旭.基于用户可信度聚类的协同过滤推荐模型[J].微计算机信息,2010,26(30):219-221. 被引量:2
  • 9MovieLens Dataset. http://MovieLens.umn.edu/. 被引量:1

二级参考文献3

共引文献1

同被引文献35

  • 1杨博,赵鹏飞.推荐算法综述[J].山西大学学报(自然科学版),2011,34(3):337-350. 被引量:87
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3Gale D, Shapley L S. College admissions and the stability of marriage[J]. The American Mathematical Monthly, 1962,69(1) :9]5. 被引量:1
  • 4Shapley L S. On market games[J]. Journal of Economic Theory, 1969,1 9-25. 被引量:1
  • 5Roth A E. Incentive compatibility in a market with indi- visible goods[C]//Economics Letters,1982:127]32. 被引量:1
  • 6Roth A E,Sonmez T, Utuuver M. Pairwise kidney ex- change[J:]. Journal of Economics Theory, 2005, 125: 127]32. 被引量:1
  • 7龚亮.推荐系统实践[M].北京:人民邮电出版社,2012:59-61. 被引量:1
  • 8对投资人的要求高.京东股权众辞行屑丝们玩不起[EB/OL].[2015-07-09].http://www, pSw. Net/fund/smjj1759/201503/t201503311002660, htrm. 被引量:1
  • 9Shapley L S. On market games[J]. Journal of Economic Theory, 1969,16(1) : 9-25. 被引量:1
  • 10Roth A E, Sonmez T,Utuuver M. Pairwise kidney ex- change[J]. Journal of Economics Theory, 2005, 152 (5) : 127-132. 被引量:1

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部