期刊文献+

G-S模型下的双边推荐算法 被引量:1

Two-Side Drecommendation Algorithm on G-S Model
下载PDF
导出
摘要 针对推荐算法忽视供应商偏好,引入Pareto最优的概念,提出一种改进的双边推荐算法.首先比对消费者要求和供应商属性,得出消费者对各个供应商的满意度;其次比对供应商要求和消费者信用属性,得到供应商对潜在消费者的满意度;最后消费者的满意值作为G-S算法的输入项,得到消费者、供应商的匹配结果.仿真结果表明,算法提高双方的满意度. The absence of supplies' interest is existed in recommendation algorithm, to address the issue in this paper Pareto Optimality is imroduced and a modified two-sided algorithm is proposed. Firstly, it compares consumers' demand and suppliers' properties, then infers the consumers' satisfaetion. Secondly, it compares suppliers' demand and consumers' credit, then make sure the supplies' satisfaction. The improved the G-S algorithm for consumers and sellers provides appropriate match according the consumers' satisfy. Experiments show that the algorithm has high satisfy.
出处 《微电子学与计算机》 CSCD 北大核心 2016年第4期117-120,124,共5页 Microelectronics & Computer
基金 国家自然科学基金(61262074) 广西可信软件重点实验室开放课题(kx201101) 广西高校优秀人才资助计划(桂教人201065) 广西自然科学回国基金(2012GXNSFCA053009) 广西信息科学实验中心项目资助 桂林电子科技大学计算机软件创新团队资助
关键词 推荐算法 满意值 PARETO最优 G-S算法 recommendation algorithm satisfy pareto principle G-S algorithm
  • 相关文献

参考文献8

二级参考文献31

  • 1张锋,常会友.基于分布式数据的隐私保持协同过滤推荐研究[J].计算机学报,2006,29(8):1487-1495. 被引量:17
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52. 被引量:1
  • 4Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70. 被引量:1
  • 5Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186. 被引量:1
  • 6Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217. 被引量:1
  • 7Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201. 被引量:1
  • 8Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295. 被引量:1
  • 9Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212. 被引量:1
  • 10Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38. 被引量:1

共引文献639

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部