期刊文献+

基于智能单粒子与信号变化度的盲源分离算法 被引量:2

Blind source separation algorithm based on intelligent single particle and signal variability
下载PDF
导出
摘要 提出了一种新的基于智能单粒子优化的有序盲源分离算法。采用信号变化度作为分离的目标函数,利用球坐标变换方法对分离向量进行变换,使用智能单粒子优化算法对目标函数进行求解,通过去相关方法从混合信号中去除已分离出的源信号成分,最终实现按照信号变化度降序分离出各源信号。仿真结果表明,本算法能够有效实现对源信号的有序分离,且分离精度很高。 A novel sequential blind source separation algorithm based on intelligent single particle optimization is proposed. The signal variability is used as the objective function and the separation vector is transformed using the spherical coordinates transform method. The intelligent single particle optimization algorithm is used for solving the objective function. The source signal component separated is wiped off using decorrelation method and source signal could be separated out respectively according to the decreasing order of the signal variability. Simulation results show that the separation algorithm proposed can realize sequential separation of source signal efficiently and the separation precision is very high.
出处 《电路与系统学报》 CSCD 北大核心 2012年第4期89-94,共6页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(60802049) 天津市高校科技发展基金资助项目(20080710)
关键词 盲源分离 信号变化度 智能单粒子 有序分离 blind source separation signal variability intelligent single particle sequential separation
  • 相关文献

参考文献16

  • 1T Yoshioka, T Nakatani, M Miyoshi, et al. Blind separation and dereverberation of speech mixtures by joint optimization [J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(1): 69-84. 被引量:1
  • 2A Tonazzini, I Gerace, F Martinelli. Multichannel blind separation and deconvolution of images for document analysis [J]. IEEE Transactions on Image Processing, 2010, 19(4): 912-925. 被引量:1
  • 3V Zagorodnov, A Ciptadi. Component analysis approach to estimation of tissue intensity distributions of 3D images [J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 838-848. 被引量:1
  • 4E Florian, A Chevreuil, Ph Loubaton. Blind source separation of convolutive mixtures of non-circular linearly modulated signals with unknown baud rates [J]. Signal Processing, 2012, 92(3): 715-726. 被引量:1
  • 5李军华,黎明.噪声环境下遗传算法的收敛性和收敛速度估计[J].电子学报,2011,39(8):1898-1902. 被引量:5
  • 6Y M Kim, E J Lee, H S Park. Ant colony optimization based self-organizing QoS framework in IP networks [J]. IEEE Communications Letters, 2010, 14(11): 1074-1076. 被引量:1
  • 7B Luitel, G K Venayagamoorthy. Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO leaming systems [J]. Neural Networks, 2010, 23(5): 583-586. 被引量:1
  • 8纪震,周家锐,廖惠连,吴青华.智能单粒子优化算法[J].计算机学报,2010,33(3):556-561. 被引量:61
  • 9陈永彬,张琢.智能单粒子优化算法在聚类分析中的应用[J].南京大学学报(自然科学版),2011,47(5):578-584. 被引量:3
  • 10郭康,徐玉琴,张丽,岳建房.基于智能单粒子算法的含光伏电站配电网的无功优化[J].电力科学与工程,2011,27(8):28-32. 被引量:8

二级参考文献84

共引文献101

同被引文献19

  • 1胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:336
  • 2GAZZAH H. SOS-based blind channel equalization with quadraticcomplexity [J]. IEEE Trans on Signal Processing, 2011,59(2): 837-841. 被引量:1
  • 3YU Cheng-pu, ZHANG Ci-sheng, XIE U-hua. A blind deconvolu-tion approach to ultrasound imaging[J]. IEEE Trans on Ultraso-nics, Ferroelectrics and Frequency Control, 2012, 59(2) : 271-280. 被引量:1
  • 4WU Guo-rong, LIAO Wei, STRAMAGLIA S, et al. A blind decon-volution approach to recover effective connectivity brain networks fromresting state fMRI data [J]. Medical Image Analysis, 2013,17(3): 365-374. 被引量:1
  • 5TAKAHATA A K,NAD ALIN E Z, FERRARI R, et al. Unsuper-vised processing of geophysical signals : a review of some key aspectsof blind deconvolution and blind source separation^ J]. IEEE SignalProcessing Magazine, 2012,29(4) : 27-35. 被引量:1
  • 6CADZOW J A, LI X K. Blind deconvolution [J]. Digital SignalProcessing, 1995,5(1) : 3-20. 被引量:1
  • 7FIORI S. Blind deconvolution by simple adaptive activation functionneuron[J]. Neurocomputing,2002, 48(1-4) : 763-778. 被引量:1
  • 8GORRIZ J M, PUNTONET C G, ROJAS F,et al. Optimizing blindsource separation with guided genetic algorithms [J]. NeurOCOmpu-ting, 2006,69(13-15) : 1442-1457. 被引量:1
  • 9HSIEH S T, SUN T Y,LIN Chun-ling, et al. Effective learning rateadjustment of blind source separation based on an improved particleswarm optimizerf J]. IEEE Trans on Evolutionary Computation,2008, 12(2) : 242-251. 被引量:1
  • 10SUN T Y, LIU Chan-cheng, TSAI S J,eZ al. Cluster guide particleswarm optimization ( CGPSO) for underdetermined blind source sepa-ration with advanced conditions [J]. IEEE Trans on EvolutionaryComputation, 2011,15(6): 798-811. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部