期刊文献+

基于QR分解的盲源分离几何算法 被引量:4

Geometrical algorithm of blind source separation based on QR decomposition
下载PDF
导出
摘要 提出了一类新的实时线性混叠信号盲分离算法,该算法基于混叠矩阵的QR分解思想,结合均匀分布的源信号相互独立时其Scatter图具有的特殊形状以及与坐标轴平行的几何性质,导出了一类盲源分离的几何算法.本文的方法相对Taro和Hyvarinen而言,大大简化了其分离过程,从而缩短了分离时间.仿真结果表明,对同样两幅混叠图像的分离,在效果相当的情况下,本文算法的分离时间比Hyvarinen的分离时间缩短了约2.5倍. Geometric algorithms for blind signal separation(BSS) have recently received some attention due to their pictorial description and their relative ease of implementation.We present a new blind separation algorithm of instantaneous mixing (model,)which is based on QR decomposition of mixing matrix.And the scatter plot of source signals show special geometrical shape when source signals are statistically independent and uniformly distributed.Comparing with Taro or Hyvarinen algorithms,this algorithm is very simple and fast.Simulation result shows that the separation time of our algorithm is two and half times shorter than that of Taro and Hyvarinen under the same separation performance and the same source signals.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2005年第1期17-22,共6页 Control Theory & Applications
基金 国家杰出青年科学基金资助项目(60325310) 国家自然科学基金资助项目(60274006) 广东省自然科学重点基金资助项目(020826) 教育部跨世纪优秀人才基金资助项目 广东省自然科学团队研究项目(04205783).
关键词 Givens变换 白化 Scatter图 盲分离 Givens transform whiten Scatter plot blind separation
  • 相关文献

参考文献13

  • 1谭丽丽,韦岗.多输入多输出盲解卷问题的最大熵解法[J].电子学报,2000,28(1):114-116. 被引量:13
  • 2程云鹏.矩阵论[M].西安:西北大学出版社,2000.. 被引量:68
  • 3BELOOUCHRANI A, KARIM Abed-Meraim, CARDOSO Jean-Francois, et al. A blind source separation technique using second-order statistics [ J ]. IEEE Trans on Signal Processing, 1997,45 (2): 434 -443. 被引量:1
  • 4LAI Wai-kuen, CHING P-C. A novel blind estimation algorithm [J].IEEE Trans on Signal Processing, 1997,45 ( 7 ): 1763 - 1769. 被引量:1
  • 5BELOOUCHRANI A, MOENESS G A. Blind source separation based on time-frequency signal representations [ J ]. IEEE Trans on Signal Processing, 1998,46 ( 11 ): 2888 - 2897. 被引量:1
  • 6CARDOSO J F, SOUIOUMICA A. Blind beamforming for non-gaussain signals [J]. IEE Proc-F, 1993,140(6) :362 - 370. 被引量:1
  • 7YAMAGUCHI T, ITOH K. An algebraic solution to independent component analysis [ J]. Optics Communications ,2000,178( 1 ) :59 - 64. 被引量:1
  • 8ZHU Jie, CAO Xiren, DING Zhi. An algebraic principle for blind separation of white non-Gaussian sources [ J]. IEEE Trans on Signal Processing, 1999,76(2): 105 - 115. 被引量:1
  • 9DAI Xianhua. A new blind separation method of convolutive mixture of regular signal based on hidden representation and system deconvolution [J]. IEEE Trans on Signal Processing, 2001,81 ( 1 ): 173 -182. 被引量:1
  • 10DING Zhi, NGUYEN T. Stationary points of a Kurtosis maxmization algorithm for blind signal separation and antenna beamforming [J].IEEE Trans on Signal Process,2000,48(6):1587- 1596. 被引量:1

二级参考文献3

共引文献79

同被引文献41

  • 1章晋龙,何昭水,谢胜利,刘海林.多个源信号混叠的盲分离几何算法[J].计算机学报,2005,28(9):1575-1581. 被引量:7
  • 2谢胜利,何昭水,章晋龙,傅予力.关于盲信号自适应分离中非线性函数的讨论[J].自动化学报,2005,31(6):825-832. 被引量:1
  • 3陆宁云,王福利,高福荣,王姝.间歇过程的统计建模与在线监测[J].自动化学报,2006,32(3):400-410. 被引量:61
  • 4周东华 叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社,2001.11-18. 被引量:2
  • 5HYVARINEN A, KARHUNEN J, OJA E. Independent Component Analysis[M]. New York: Wiley, 2001. 被引量:1
  • 6HYVARINEN A. A unifying model for blind separation of indepen- dent sources[J]. Signal Processing, 2005, 85(2): 1419 - 1427. 被引量:1
  • 7AMARI S. Natural gradient works efficiently in learning[J]. Neural Computation, 1998, 10(2): 271- 276. 被引量:1
  • 8CARDOSO J F, LAHELD B H. Equivariant adaptive source separa- tion[J]. IEEE Transactions on Signal Processing, 1996, 44(12): 3017 - 3030. 被引量:1
  • 9HSIEH S T, SUN T Y, LIN C L, et al. Effective learning rate ad- justment of blind source separation based on an improved particle swarm optimizer[J]. IEEE Transactions on Evolutionary Computa- tion, 2008, 12(2): 242 - 251. 被引量:1
  • 10PAJUNEN P, KARHUNEN J. Least-squares methods for blind source separation based on nonlinear PCA[J]. International Journal of Neu- ral Systems, 1998, 8(5/6): 601 - 612. 被引量:1

引证文献4

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部