摘要
考虑奇型实系数微分算式l(y)=∑j=0^n(-1)^j(pn-j(x)y(j))^(j)(x∈「a,∞」).在函数空间L^2「a,∞)上,本文借助边界条件刻画了l(y)生成极大增生算子的充要条件,及具l(y)最小生成算子为非向自伴扩张的充要条件。
Let l(y) = be a symmetric differential expression defined on interval [a). In L2 , we give the complete characterization for all maximal accretive operators associated with l(y) via explicit boundary conditions, and we obtain the complete analytic description for all nonnegative self-adjoint extensions of the minimal operator generated by l(y).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第2期291-300,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!19801027
关键词
极大增生算子
非负自伴扩张
奇型微分算子
Maximal accretive operator, IIm space, Dirichlet integration, Nonnegative self-adjoint extension