期刊文献+

BEMD在复杂背景下弱小目标检测中的应用 被引量:2

BEMD in weak and small target detection under complicated background
下载PDF
导出
摘要 针对复杂背景下的弱小目标检测与识别问题,提出了一种基于二维经验模态分解(Bidimensional Empirical Mode Decomposition,BEMD)的检测算法。待检测的原图像经过BEMD分解筛选出多个二维的内蕴模函数(Intrinsic Mode Functions,IMF)和趋势图像,使用全局门限法分割各个IMF,将处理后的IMFs综合成一个分割出待检测目标的结果图像。实验结果表明,该方法使用简洁的步骤,有效、准确地检测出弱小目标。 For the purpose of weak and small target detection under complicated background,this paper proposes a target detection algorithm based on Bidimensional Empirical Mode Decomposition(BEMD).Images to be detected are decomposed into several bidimensional Intrinsic Mode Functions(IMF)as well as a residual image.Global threshold method is used to segment all IMFs.IMFs processed are synthesized to be one resulting image with segmented targets to be detected.The experiments have shown that the algorithm efficiently and accurately detects weak and small target with simplified method.
出处 《计算机工程与应用》 CSCD 2012年第21期205-208,216,共5页 Computer Engineering and Applications
基金 国家自然科学基金青年基金(No.40801164) 华中科技大学国防自主创新基金
关键词 二维经验模态分解 内蕴模函数 弱小目标 分割 检测 Bidimensional Empirical Mode Decomposition(BEMD) Intrinsic Mode Functions(IMF) weak and small target segmentation detection
  • 相关文献

参考文献13

  • 1Huang N E,Shen Zheng,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for non- linear and non-stationary time series analysis[J].Proc R Soc Lond A, 1998,454:903-995. 被引量:1
  • 2Nunes J C,Bouaoune Y,Delechelle E,et al.lmage analy- sis by bidimensional empirical mode decomposition[J]. Image and Vision Computing,2003,21:1019-1026. 被引量:1
  • 3徐琼..基于二维EMD分解的数字图像压缩研究[D].长沙理工大学,2009:
  • 4何培培.基于BEMD的图像去噪[J].计算机仿真,2009,26(1):216-218. 被引量:4
  • 5郑有志,覃征.基于二维经验模态分解的医学图像融合算法[J].软件学报,2009,20(5):1096-1105. 被引量:29
  • 6Bai Xueru,Xing Mengdao.Imaging of micromotion tar- gets with rotating parts based on empirical mode decom- position[J].IEEE Transactions on Geoscience and Remote Sensing,, 2008,46( 11 ) : 3514-3523. 被引量:1
  • 7沈路,杨富春,周晓军,刘莉.基于改进EMD与形态滤波的齿轮故障特征提取[J].振动与冲击,2010,29(3):154-157. 被引量:29
  • 8Vincent L.Morphological gray scale reconstruction in im- age analysis: applications and efficient algorithms[J].IEEETrans on Image Process, 1993,2(2) : 176-201. 被引量:1
  • 9Sandwell D T.Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data[J].Geophysical Research Let- ters, 1987, 14(2) : 139-142. 被引量:1
  • 10Carr J C, Fright W R,Beatson R K.Surface interpola- tion with radial basis fimctions for medical imaging[J]. IEEE Transactions on Medical Imaging, 1997, 16(1): 96-107. 被引量:1

二级参考文献31

共引文献99

同被引文献43

  • 1王力民,张蕊,林一楠,徐世录.红外探测技术在军事上的应用[J].红外与激光工程,2008,37(S2):570-574. 被引量:18
  • 2王改梅,刘瑞光,刘芳.基于小波包变换的纹理图像检索[J].计算机工程与应用,2004,40(18):44-46. 被引量:14
  • 3张新明,党留群,徐久成.基于十字滑动窗口的快速自适应图像中值滤波[J].计算机工程与应用,2007,43(27):37-39. 被引量:12
  • 4R. Kwitt,A. Uhl. Image Similarity Measurement by Kullback- Leibler Divergences between Complex Wavelet Subband Statics for Texture Retrieval[C]. In Proceedings of the IEEE International Conference on Image Processing. California: ICIP'2008,2008:933-936. 被引量:1
  • 5罗佳,石跃祥,段德友.基于SIFT特征的人脸识别方法[J].汁算机工程.2010.7:173-175. 被引量:1
  • 6Huang N E, et all. The Empirical Mode Decomposition and the Hilbert Spectrum for Non-Linear and Non-Stationary Time Series Analysis [C]. In: Proceedings of Royal Society. London:The Royal Society, 1998, 903-995. 被引量:1
  • 7J. C. Nunes, Y. Bouaoune, E. Delechelle, O. Niang,Ph. Bunel. hnage Analysis by Bidimensional Empirical Mode Decomposition[J]. Image and Vision Computing, 2003,21: 1019-1026. 被引量:1
  • 8Sharif M. A. Bhuiyan, Reza R. Adhami and F.Jesmin. Fast and Adaptive Bidimensional Empirical Mode Decomposition using a Novel Approach of Envelope Estimation[C]. IEEE Internaionl Conference, Rome,2008. 被引量:1
  • 9Bhuiyan SMA,Adhami RR,Khan JF.Fast and Adaptive Bidimensional Empirical Mode Decomposition Using Order- Statistics Filter Based Envelope Estimation[J]. Journal on Advances in Signal Processing, 2008. 被引量:1
  • 10吴文怡,吴一全.基于Contourlet变换的红外弱小目标检测方法[J].红外与激光工程,2008,37(1):136-138. 被引量:13

引证文献2

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部