期刊文献+

红外弱小目标检测算法综述 被引量:30

Infrared small-target detection algorithms:a survey
原文传递
导出
摘要 红外探测技术具有不受环境等因素干扰的优势,在红外制导、预警等军事领域的应用日益广泛。随着对红外弱小目标检测技术的研究越来越深入,相应的检测方法越来越多样。本文通过对红外弱小目标图像中目标与背景的特性以及红外弱小目标检测技术难点问题进行分析,根据当前是否利用帧间相关信息,分别从基于单帧红外图像和基于红外序列两个角度,选取了相应的红外弱小目标算法进行对比,对其中典型算法的原理、流程以及特点等进行了详细综述,并对每类检测算法的性能进行了比较。针对红外弱小目标图像信噪比低的特点,对红外弱小目标检测算法的难点问题进行分析,给出了目前各种算法的解决方法和不足,探讨红外弱小目标检测算法的发展方向,即研究计算量小、性能优、鲁棒性强、实时性好和便于硬件实现的算法。 Infrared acquisition technologies are not easily disturbed by environmental factors and have strong penetrability.In addition,the effect of infrared acquisition is mainly determined by the temperature of the object itself.Therefore,such technology has been widely used in the military field,such as in infrared guidance,infrared antimissile,and early warning systems.With the rapid development of computer vision and digital image processing technologies,infrared small-target detection has gradually become the focus and challenge of research,and the number of relevant methods and kinds of infrared small-target detection techniques are increasing.However,given the characteristics of small imaging area,long distance,lack of detailed features,weak shape features,and low signal-to-noise ratio,infrared dim-and small-target detection technology has always been a key technical problem in infrared guidance systems.In this study,two kinds of methods,which are based on single-frame images and infrared sequence and extensively used at present,are reviewed.This work serves as basis for follow-up research on the theory and development of small-target detection.The corresponding infrared small-target algorithm is selected for comparison on the basis of the analysis of the characteristics of the target and background in infrared small-target images and the difficulties of infrared small-target detection technology,in accordance with whether the interframe correlation information is used,and from the perspective of single-frame infrared image and infrared sequence.Single-frame based algorithms can be divided into three categories,including filtering methods,human vision system based methods low-rank sparse recovery base methods.The method based on filtering estimates the background of infrared images,using the frequency difference among the target,background and clutter to filter the background and clutter,to achieve the effect of background suppression.The method based on human vision systems mainly uses the visual perception chara
作者 李俊宏 张萍 王晓玮 黄世泽 Li Junhong;Zhang Ping;Wang Xiaowei;Huang Shize(School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu 610054,China)
出处 《中国图象图形学报》 CSCD 北大核心 2020年第9期1739-1753,共15页 Journal of Image and Graphics
基金 四川省科技计划项目(2018GZ0166,2019YFG0307)。
关键词 红外图像 红外序列 红外弱小目标 低秩稀疏表示 小目标检测 infrared image infrared sequences infrared small target low-rank and sparse representation(LRSR) small-target detection
  • 相关文献

参考文献17

二级参考文献161

共引文献389

同被引文献181

引证文献30

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部