期刊文献+

一种改进的二维经验模态分解图像消噪方法 被引量:5

An Improved Image Denoising Method Based on Bidimensional Empirical Mode Decomposition
下载PDF
导出
摘要 在含噪图像的二维经验模态分解(BEMD)的基础上,从图像BEMD分解系数的统计特性出发,构造图像BEMD系数的概率密度函数模型,提出了一种基于相邻尺度间BEMD系数相关性的图像消噪方法,消噪的过程中同时考虑本层BEMD系数特性以及其父层BEMD系数的值。从而能更好地消除噪声,同时更有效地保留图像边缘、纹理等细节信息。实验结果表明,与经典的小波阈值消噪和BEMD阈值消噪算法相比,经本文方法消噪后图像质量有较好的提高,具有更低的均方误差和更高的峰值信噪比。 After denoised image is decomposed by bidimensional empirical mode decomposition( BEMD), the probability density function(PDF) is constructed by the statistical properties of BEMD coefficients. A new de- noising method is proposed based on the coherence of adjacent level BEMD coefficients and PDF of BEMD co- efficients. The experimental results show that the proposed method can remove the noise better, and preserve the details of edges and textures more effectively. Compared with the wavelet threshold denoising and BEMD threshold denoising, the images denoised by the proposed method have lower mean square error, higher peak signal to noise ratio and better visual effects.
作者 谭莉 吴纯
出处 《测控技术》 CSCD 2015年第6期24-26,30,共4页 Measurement & Control Technology
基金 国家自然科学基金资助项目(41071270 11201354)
关键词 二维经验模态分解 图像消噪 概率密度函数 系数相关性 bidimensional empirical mode decomposition image denoising probability density tunction coetti-cient correlation
  • 相关文献

参考文献10

  • 1Huang N E, Shen Z, Long S R, et al. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proceedings of the Royal Society of London, 1998 ,A454 ( 1971 ) :903 - 995. 被引量:1
  • 2Kopsinis Y, Mclaughli S. Development of EMD-based denois- ing methods inspired by wavelet thresholding [ J ]. IEEE Transactions on Signal Processing, 2009,57 ( 4 ) : 1351 - 1362. 被引量:1
  • 3Nunes J C, Bouaoune Y, Delechelle E, et al. Image analysis by bidimensional empirical mode decomposition [ J ]. Image and Vision Computing,2003,21 (12) : 1019 - 1026. 被引量:1
  • 4Liu Z J, Song P, Zhang J, et al. Bidimensional empirical mode decomposition for the fusion of muhispectral and panchromat- ic images [ J ] International Journal of Remote Sensing, 2007,28 ( 18 ) :4081 - 4093. 被引量:1
  • 5郑有志,覃征.基于二维经验模态分解的医学图像融合算法[J].软件学报,2009,20(5):1096-1105. 被引量:29
  • 6韩春明,郭华东,王长林.利用经验模态分解方法抑制SAR斑点噪声[J].遥感学报,2002,6(4):266-271. 被引量:17
  • 7Han C M, Hua D G, Chang L, et al. A novel method to re- duce speckle in SAR images[ J]. International Journal of Re- mote Sensing,2002,23:5095 - 5101. 被引量:1
  • 8Portilla, Strela V, Wainwright M J, et al. Image denoising u- sing scale mixtures of gaussians in the wavelet domain [ J ]. IEEE Transaction on Image Processing,2003,12 ( 11 ) : 1338 - 1351. 被引量:1
  • 9Damerval C, Meignen S, Perrier V. A fast algorithm for bidi- mensional EMD [ J ]. IEEE Signal Processing Letters, 2005, 12(10) :701 -704. 被引量:1
  • 10Donoho D L. De-noising by soft-thresholding [ J ]. IEEE Transactions on Information Theory, 1995,41 ( 3 ) : 613 - 627. 被引量:1

二级参考文献2

共引文献44

同被引文献26

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部