期刊文献+

时空加权回归模型的非平稳性检验 被引量:6

The Nonstationarity Tests of Geographically and Temporally Weighted Regression Model
下载PDF
导出
摘要 时空数据具有空间非平稳性和时间相关性的特征,单纯考虑空间因素或时间因素,用地理加权回归模型或时间加权回归模型来拟合时空数据,其分析结果不能全面反映时空数据的真实特征.时空加权回归模型通过在线性回归模型中假定回归系数为地理位置和观测时刻的函数,将数据的时空特性纳入到模型中,为探索回归关系的时空平稳性创造了条件.基于加权最小二乘估计理论,给出了时空加权回归模型回归关系的空间平稳性检验和时间相关性检验方法. There are the characteristic features of spatial nonstationarity and temporal correlation for the spatio-temporal data. If we consider only the spatial factor or temporal factor to fit the spatio-temporal data by geographically weighted regression model or temporal weighted regression model, the analysed results can not reflect the true characteristics of spatio-temporal data. Geographically and Temporally Weighted Regression Model assumes that the regression coefficients are the functions of geographical position and observation time in linear regression model, and the spatio-temporal characteristics of data are involved in the model,thus creating conditions for exploring the spatio-temporal nonstationarity of the regression rela- tion. The methods of spatial nonstationarity test and temporal correlation test of the regression relation of geographically and temporally weighted regression model are introduced here on the basis of the theory of weighted least squares estimate.
出处 《甘肃科学学报》 2012年第2期1-4,共4页 Journal of Gansu Sciences
关键词 时空加权回归模型 空间非平稳性 时间相关性 Geographically and temporally weighted regression model spatial nonstationarity temporal correlation
  • 相关文献

参考文献8

  • 1Huang B, Wu B, Barry M. Geographically and Temporally Weighted Regression for Spatio-temperal Modeling of House Prices[J]. International Journal of Geographical Information Science, 2010,24 (3): 383-401. 被引量:1
  • 2王松桂 等.线性统计模型[M].北京:高等教育出版社,1999.. 被引量:47
  • 3范金城,梅长林编著..数据分析[M].北京:科学出版社,2010:353.
  • 4梅长林,张文修.利用局部加权拟合方法检验线性回归关系[J].系统科学与数学,2002,22(4):467-480. 被引量:21
  • 5Brunsdon C,Fotheringham A S, Charlton M. Some Notes on Parametric Significance Test for Geographically Weighted Regression[J]. Journal of Regional Science,1999,39(3) :497-524. 被引量:1
  • 6Brunsdon C,Fotheringham A S,Charlton M. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity[J]. Geographical Analysis, 1996,28(4):281-298. 被引量:1
  • 7Brunsdon C,Fotheringham A S,Charlton M. Geographically Weighted Regression-modelling Spatial Nonstationarity[J]. The Statistician, 1998,47(3) :431-443. 被引量:1
  • 8Leung Y, Mei C L, Zhang W X. Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model[J]. Environment and Planning A, 2000,32 (1): 9-32. 被引量:1

二级参考文献18

  • 1[1]Yanagimoto T and Yanagimoto M. The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model. Technometrics, 1987, 29: 95-101. 被引量:1
  • 2[2]Cox D, Koh E, Wahba G and Yandell B S. Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. The Annals of Statistics, 1988, 16: 113-119. 被引量:1
  • 3[3]Eubank R L and Spiegelman C H. Testing the goodness of fit of a linear model via nonparametric regression techniques. Journal of the American Statistical Association, 1990, 85: 387-392. 被引量:1
  • 4[4]Jayasuriya B R. Testing for polynomial regression using nonparametric regression techniques. Journal of the American Statistical Association, 1996, 91: 1626-1631. 被引量:1
  • 5[5]Azzalini A, Bowman A W and Hardle W. On the use of nonparametric regression for model checking. Biometrika, 1989, 76: 1-11. 被引量:1
  • 6[6]Hardle W and Mammen E. Comparing nonparametric versus parametric regression fits. The Annals of Statistics, 1993, 21: 1926-1947. 被引量:1
  • 7[7]Hjellvik V and Tjφstheim D. Nonparametric tests of linearity for time series. Biometrika, 1995,82: 351-368. 被引量:1
  • 8[8]Cleveland W S. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 1979, 74: 829-836. 被引量:1
  • 9[9]Cleveland W S and Devlin S J. Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 1988, 83: 596-610. 被引量:1
  • 10[10]Fan J and Gijbels I. Local Polynomial Regression and Its Applications. London: Chapman and Hall, 1996. 被引量:1

共引文献65

同被引文献27

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部