期刊文献+

路网距离约束的GTWR模型应用——以北京市房价为例 被引量:6

Application of GTWR model constraint of road network distance——a case study of housing price in Beijing City
原文传递
导出
摘要 针对传统地理加权回归方法无法解决时空非平稳性的问题,该文提出了一种路网距离约束的时空地理加权回归方法。引入时间特性,进一步把握了不同因子在时空维度影响的分异性;以路网距离度量约束,提高模型解释力。以北京市城6区1980—2015年的1 632个住宅小区特征价格数据为例,通过与直线距离约束的常规地理加权回归方法等进行比较,采用各模型的AIC与拟合优度等指标对模型置信水平高低进行评价。实验结果表明,路网距离约束的地理加权回归模型不仅能够提高模型的拟合精度,还能更好地揭示房价在时间与空间方面的变化规律。 According to the fact that traditional geographical weighted regression methods cannot solve the problem of space-time non stationarity,this paper presented a geographically temporal weighted regression method constraint of road network distance.The introduction of time characteristics,further grasp the different factors in the spatial and temporal dimensions of the impact of the different;with the network distance constraints,the explanatory power of the model could be improved.Based on average housing price of 1 623 residential quarters within the main city of Beijing from 1980 to 2015,the confidence level of the model was evaluated using AIC and the goodness of fit index of each model and comparing with the normal geographically weighted regression method constraint of straight-line distance.The results showed that the geographically temporal weighted regression method constraint of road network distance can not only improve the fitting the accuracy of the model,but also reveal the change of housing price in time and space.
作者 王梦晗 刘纪平 王勇 罗安 徐胜华 WANG Menghan;LIU Jiping;WANG gong;LUO An;XU Shenghua(Shandong Agricultural University, Tai'an, Shandong 271018, China;Chinese Academy of Surveying and Mapping, Beijing 100830, China)
出处 《测绘科学》 CSCD 北大核心 2018年第4期133-137,共5页 Science of Surveying and Mapping
关键词 GTWR模型 路网距离 时空非平稳性 北京房价 GTWR model road network distance space-time non stationarity Beijing housing prices
  • 相关文献

参考文献6

二级参考文献58

  • 1覃文忠,王建梅,刘妙龙.混合地理加权回归模型算法研究[J].武汉大学学报(信息科学版),2007,32(2):115-119. 被引量:32
  • 2Adair A S,Berry J N,McGreal W S.1996.Hedonic modeling,housing submarkets and residential valuation[J].Journal of Property Research,13:67-83. 被引量:1
  • 3Can A,Megbolugbe I.1997.Spatail dependence and house price index construction[J].Journal of Real Estate Finance and Economics,14:203-222. 被引量:1
  • 4Fotheringham A S,Brunsdon C,Charlton M.2002.Geographically Weighted Regression[M].Chichester,UK:John Wiley and Sons. 被引量:1
  • 5Fotheringham A S,Charlton M E,Brunsdon C.1996.The geography of parameter space:an investigation of spatial non-stationarity[J].International Journal of Geographical Information Science,10:605-627. 被引量:1
  • 6Gelfand A E,Kim H J,Sirmans C F,et al.2003.Spatial modeling with spatially varying coefficients processes[J].Journal of the American Statistical Association,98:387-396. 被引量:1
  • 7Huang B,Wu B,Barry T.2010.Geographically and temporally weighted regression for spatiotemporal modeling of house prices[J].International Journal of Geographical information science,24(3):383-401. 被引量:1
  • 8Leung Y,Mei C L,Zhang W X.2000.Statistical tests for spatial nonstationarity based on the geographically weighted regression model[J].Environment and Planning A,32:9-32. 被引量:1
  • 9Pace R K,Barry R,Sirmans C F.1998.Spatial statistics and real estate[J].Journal of Real Estate Finance and Economics,17:5-13. 被引量:1
  • 10Yu D L.2006.Spatially varying development mechanisms in the Greater Beijing Area:a geographically weighted regression investigation[J].The Annals of Regional Science,40(1):173-190. 被引量:1

共引文献77

同被引文献63

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部