期刊文献+

基于AR模型的Kolmogorov-Smirnov检验性能退化及预测研究 被引量:15

Performance degradation assessment by Kolmogorov-Smirnov test and prognosis based on AR model
下载PDF
导出
摘要 设备性能退化评估是对现有故障诊断技术的全新拓展,能更有效地实现智能主动维护提供参考,更有利于实现设备的零停机率。开展对设备的性能退化评估研究,还可以实现对设备的性能预测维护功能,大大提高设备运行的可靠性。提出了基于AR预测白噪化的Kolmogorov-Smirnov检验方法,同时实现了滚动轴承的全寿命实验。通过对轴承全寿命实验数据的分析研究,论证了该方法在设备性能退化评估及预测中的研究价值,相对于有效值等传统方法,不仅能够显著地表现前期的微弱退化状态,而且还能有条件地更早指示设备的异常状态,对于故障预测的研究具有较大的意义。 Equipment performance degradation assessment can give effective reference to intelligent proactive maintenance to realize near-zero downtime. By carrying out the research on performance degradation assessment, the predictive maintenance for the equipment can be realized which can improve the reliability of the equipment. Kolmogorov- Smirnov test based on AR model was proposed. According to the analysis of data in rolling beating's whole life time (normal-fault-failure) , the proposed method can effectively realize the performance degradation assessment and prognosis of the bearings. Comparing with traditional method, it can not only obviously detect incipient weak defect and indicate performance degradation process but also detect abnormal stage earlier before the start of bearing failure under some conditions.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第10期79-82,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50875162 51035007) 国家高技术研究发展计划(863计划 2006AA04Z175)
关键词 Kolmogorov-Smirnov检验 性能退化评估 预测 AR滤波 白噪化 Kolmogorov-Smirnov test performance degradation assessment prognosis AR filter pre-whitening
  • 相关文献

参考文献10

  • 1Lee, J., Measurement of machine performance degradation using a neural network model[J].Computers in Industry,1996.30(3): p.193-209. 被引量:1
  • 2Huang, R., Xi, L., Li, X., et al., Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing,2007.21(1): p.193-207. 被引量:1
  • 3Ocak, H., Loparo, K.A., and Discenzo, F.M., Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: A method for bearing prognostics[J].Journal of Sound and Vibration,2007.302(4-5): p.951-961. 被引量:1
  • 4Pan, Y., Chen, J., and Guo, L., Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description[J].Mechanical Systems and Signal Processing,2009.23(3): p.669-681. 被引量:1
  • 5Pan, Y., Chen, J., and Li, X., Bearing performance degradation assessment based on lifting wavelet packet decomposition and fuzzy c-means[J].Mechanical Systems and Signal Processing,2010.24(2): p.559-566. 被引量:1
  • 6Pan, Y.N., Chen, J., and Li, X.L., Spectral entropy: A complementary index for rolling element bearing performance degradation assessment[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,2009.223(5): p.1223-1231. 被引量:1
  • 7张海勇,李勘.非平稳随机信号的参数模型分析方法[J].系统工程与电子技术,2003,25(3):386-390. 被引量:14
  • 8Andrade, F.A., Esat, I., and Badi, M.N.M., A new approach to time-domain vibration condition monitoring: gear tooth fatigue crack detection and identification by the Kolmogorov-Smirnov test[J].Journal of Sound and Vibration,2001.240(5): p.909-919. 被引量:1
  • 9Kar, C.and Mohanty, A.R., Multistage gearbox condition monitoring using motor current signature analysis and Kolmogorov-Smirnov test[J].Journal of Sound and Vibration,2006.290(1-2): p.337-368. 被引量:1
  • 10Bannister, R.H.Review of rolling element bearing monitoring techniques.London, Engl:1985 Mechanical Engineering Publ Ltd.11-24. 被引量:1

二级参考文献7

共引文献13

同被引文献185

引证文献15

二级引证文献276

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部