摘要
令β是维数大于1的Hilbert空间H上的套,algβ为相应的套代数.k为一非零有理数.本文证明了algβ上的k-Jordan可导映射,即δ(k(ab+ba))=k(δ(a)b+aδ(b)+δ(b)a+bδ(a)),(?)a,b∈algβ,是algβ上的可加导子.特别地,当H是无限维时,δ是内导子.我们也给出了k-Jordan三重可导映射的相应结果.
Let β be a nest on a Hilbert space of dimension greater than 1,algβbe theassociated nest algebra,and k be a non-zero rational number.In this paper,We provethat a k-Jordan derivable mapδon algβ,δ(k(ab+ba))=k[δ(a)b+aδ(b)+δ(b)a+bδ(a)]for all a,b∈algβ,is an additive derivation on algβ.In particular,it is an innerderivation when H is infinite dimensional.Related results concerningκ-Jordan triplederivable maps are given.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2012年第3期567-576,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10971123)
高等教育博士点特别研究基金(20090202110001)