摘要
为消除或减弱实际工业控制非周期性的系统中存在不确定性的影响,该文针对存在可量测重复性扰动且系统初值在期望初值一定范围内随机变化的一类仿射非线性系统进行算法研究,运用有关自适应控制理论,将自适应控制方法引入到迭代学习控制中来,两者结合成一种组合智能控制算法,即自适应迭代学习控制算法,最后通过与带遗忘因子的开环PD型迭代学习律进行对比仿真研究,结果表明,采用该算法,不仅改善了非线性系统的动态跟踪性能,而且验证了该算法具有较强的自适应。
To eliminate or reduce the impact of uncertainties in the aperiodic control systems,this paper studies a class of nonlinear systems of repetitive disturbances which can be measured and system initial values within a certain range.Through using adaptive control theory,a combinational intelligent control algorithm is developed.Finally,via a comparative simulation study of the open-loop PD-type with forgetting factor to AILC,the results show that this algorithm not only improves the tracking performance,but also verify that the algorithm has a strong adaptive function.
出处
《杭州电子科技大学学报(自然科学版)》
2011年第6期151-154,共4页
Journal of Hangzhou Dianzi University:Natural Sciences
关键词
非线性系统
迭代学习控制
自适应控制
数值仿真
nonlinear systems
iterative learning control
adaptive control
numerical simulations