期刊文献+

基于结构Lyapunov矩阵的静态输出反馈镇定 被引量:9

Static output feedback stabilization based on structured Lyapunov matrix
下载PDF
导出
摘要 线性时不变系统的静态输出反馈控制可行性等价于两个耦合的线性矩阵不等式解的存在性问题,这导致了一个非线性最优化问题,是无法直接求解的.针对线性时不变系统(LTI),深入研究这两个矩阵不等式的关系,通过构造一个结构Lyapunov矩阵,给出了一个问题有解的充分条件,并在此基础上提出一个静态输出反馈镇定算法.利用线性矩阵不等式(LMI)方法,可直接求解出相应的输出反馈增益.数值实例证明了该方法的有效性. The existence of a static output feedback for linear time-invariant systems is equivalent to the solvability of two coupled linear matrix inequalities (LMI), which is a non-linear optimization problem and can not be solved directly. For linear time-invariant (LTI) systems, the relation of the two inequalities is studied in detail and a structured Lyapunov matrix is proposed to derive a sufficient condition of the solvability for the stabilization problem. The corresponding algorithm is addressed, which is simple and solvable by LMI methods. The simplicity and effectiveness of the proposed approach are demonstrated by some numerical examples.
出处 《控制与决策》 EI CSCD 北大核心 2004年第9期978-982,993,共6页 Control and Decision
基金 国家杰出青年科学基金资助项目(NOYSFC60025308) 高等学校优秀青年教师教学和科研奖励基金资助项目.
关键词 静态输出反馈 结构Lyapunov矩阵 线性矩阵不等式 Linear systems Lyapunov methods Matrix algebra Optimal control systems
  • 相关文献

参考文献11

  • 1[1]Benton R E, Jr, Smith D. Static output feedback stabilization with prescribed degree of stability [J].IEEE Trans on Automat Contr, 1998. 43(10): 1493-1496. 被引量:1
  • 2[2]Geromel J C, de Souza C C, Skelton R E. LMI numerical solution for output feedback stabilization [A]. Proc American Control Conf [C]. Baltimore, 1994.40-44. 被引量:1
  • 3[3]Geromel J C, de Souza C C, Skelton R E. Static output feedback controllers: Stability and convexity[J]. IEEE Trans on Automat Contr, 1998, 43(1): 120-125. 被引量:1
  • 4[4]Geromal J C, Peres P L D, Souza S R. Convex analysis of output feedback control problems: Robust stability and performance[J]. IEEE Trans on Automat Contr,1996, 41(7): 997-1003. 被引量:1
  • 5[5]Iwasaki T, Skelton R E, Geromel J C. Linear quadratic suboptimal control with static output feedback[J]. Syst Contr Lett, 1994, 23(6):421-430. 被引量:1
  • 6[6]Cao Y Y, Lam J, Sun Y X. Static output feedback stabilization: An ILIMI approach [J]. Automatic,1998, 34(12): 1641-1645. 被引量:1
  • 7[7]Prempain E, Postlehwaite I. Static output feedback stabilization with H∞ performance for a class of plants [J]. Syst Contr Lett, 2001, 43(3):159-166. 被引量:1
  • 8[8]Gahinet P, Nemirovski A, Laub A J, et al. LMI Control Toolbox[M]. The Mach Works Inc, 1995. 被引量:1
  • 9[9]Boyd S, El Ghaoui L, Feron E, et al. Linear matrix inequalities in system and control theory [A]. SIAM Studies in Appplied Mathematics [C]. Philadelphia,SIAM, 1994. 被引量:1
  • 10[10]Davison E J, Wang S H. On pole assignment in linear multivariable systems using output feedback [J].IEEE Trans on Automatic Control, 1975, 20(4):516-518. 被引量:1

同被引文献59

引证文献9

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部