摘要
研究了下列问题:给定X∈Rn×p,B∈Rp×p,A0∈SRn× n>0(p<n),求子阵约束条件下n×n阶对称半正定矩阵A,使得XTAX=BTB s.t.A([1,r])=A0,其中A([1,r])是矩阵A的r×r阶主子阵.讨论了该问题有解的充要条件,并在有解时,给出了通解的一般表达式.
This paper is concerned with the following problem.. GivenX∈R^n×p,B∈R^p×p,A0∈SR^N×N〉0(P〈n) with a submatrix constraint, Such that XTAX =B^T'B s.t.A([1,r]) =A0, Where A( [ 1, r] ) is the r x r leading principal submatris of the matrix A. The necessary and sufficient conditions ence of such solutions and the general form of solutions are derived.
出处
《江苏科技大学学报(自然科学版)》
CAS
2012年第1期100-102,共3页
Journal of Jiangsu University of Science and Technology:Natural Science Edition
基金
江苏省教育厅高校自然科学基金资助项目(2009SL079J)
关键词
矩阵方程
子阵约束
半正定矩阵
matrix equation
submatrix constraint
positive semidefinite