期刊文献+

基于辅助种群分类的遗传算法 被引量:1

A Genetic Algorithm Based on the Classification of the Auxiliary Group
下载PDF
导出
摘要 提出了基于辅助种群分类的遗传算法,该算法克服了辅助种群多样性不好的缺点,利用先验知识将辅助种群分为若干类,分类后辅助种群与主种群杂交更有利于后代的进化,同时也更好保证了种群的多样性.数值试验表明,改进的算法优于当前一些较好的遗传算法,并能跳出局部最优解从而求解出全局最优解. A genetic algorithm,based on the classification of the auxiliary group,was proposed.The algorithm overcame the weakness that diversity of the auxiliary group was not perfect,and with prior knowledge it classified the auxiliary group into several subgroups.After the classification,it is more favourable for the auxiliary group and the main group to evolve.Meanwhile,the diversity of the auxiliary group is maintained.The results show that the improved algorithm is more effective than some other existing genetic algorithms.The improved algorithm avoids being trapped into the local optimum,thus deriving the global optimum.
作者 涂井先 刘伟
出处 《广东工业大学学报》 CAS 2012年第1期39-42,共4页 Journal of Guangdong University of Technology
关键词 遗传算法 辅助种群 主种群 分类 genetic algorithm auxiliary population main population classification
  • 相关文献

参考文献6

二级参考文献35

  • 1熊敏,刘玉树.基于协同进化遗传算法的地域选取方法[J].计算机技术与发展,2006,16(6):174-176. 被引量:5
  • 2刘红,韦穗.基于遗传算法的布局问题求解[J].计算机技术与发展,2007,17(1):74-75. 被引量:3
  • 3路景,周春艳.基于遗传算法的混合优化策略研究[J].计算机技术与发展,2007,17(3):144-146. 被引量:11
  • 4Slomick S A, Morton T E. Order acceptance with weighted tardiness[J ]. Computers and Operations Research, 2008,36 : 1758 - 1767. 被引量:1
  • 5Berghman L, Goossensns D, Leuss R. Efficient solutions for Mastermind using genetic algorithms[J]. Computers and Operations Research, 2008,36 : 1880 - 1885. 被引量:1
  • 6王良俊.蚁群算法理论、应用及其与其它算法的混合[D].南京:南京邮电学院,2005. 被引量:1
  • 7Borisovsky P, Dolgui A, Eremeev A. Genetic algorithms for a supply management problem: MIP - recombination vs greedy decoder[J]. Science Direct, 2007,195:770 - 779. 被引量:1
  • 8Yin X,Proc Int Conf Artificial Neural Nets and Gentic Algorithms,1993年,450页 被引量:1
  • 9玄光南 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004.. 被引量:43
  • 10Kennedy J, Eberhart R C.Particle swarm optimization [ A].In: Proceedings of IEEE International conference on Neural Networks[ C].Perth,Australia: [ s.n.], 1995.1942 - 1948. 被引量:1

共引文献36

同被引文献19

  • 1EROL 0 K , EKSIN I. A new optimization method: bigbang-big crunch [J] . Advances in Engineering Software,2006, 3 7 : 106-111. 被引量:1
  • 2KUMBASAR T , EKSIN I , GUZELKAVA M, et al. BigBang Big Crunch Optimization Method Based Fuzzy ModelInversion [M] //M IC A I 2008 : Advances in Artificial Intelligence.Berlin: Springer Berlin Heidelberg, 2 0 0 8 : 73 2 740. 被引量:1
  • 3KAVEH A , FARHOUDI N. A unified approach to parameterselection in meta-heuristic algorithms for layout optimization[J] . Journal of Constructional Steel Research, 2011,6 7 ( 1 0 ) : 1453-1462. 被引量:1
  • 4Desai S R , Prasad R. A novel order diminution of LTI systemsusing big bang big crunch optimization and routh Approximation[J] . Applied Mathematical Modelling, 2013( 3 7 ) :8016-8028. 被引量:1
  • 5JARADAT G M, AVOB M. Big bang-big crunch optimizationalgorithm to solve the course timetabling problem[C~\ //Intelligent Systems Design and Applications (ISD A ) , 201010th International Conference on. Cairo : IEEE, 2010 :1448-1452. 被引量:1
  • 6LABBI Y , ATTOUS D. Big bang-big crunch optimizationalgorithm economic dispathch with valve-point effect [J].Journal of Theoretical & Applied Information Technology,2010, 16:881-887. 被引量:1
  • 7HATAMLOU A , ABDULLAH S , HATAMLOU M. Dataclustering using big bang-big crunch algorithm [M] . BerlinHeidelberg: Springer, 2 0 1 1 : 383-388. 被引量:1
  • 8GENC H M, EKSIN I, EROL O K. Big bang-big crunchoptimization algorithm hybridized with local directionalmoves and application to target motion analysis problem[C] //Systems Man and Cybernetics (SM C) , 2010 IEEE InternationalConference on. Istanbul :IEEE, 2 0 1 0 : 881-887. 被引量:1
  • 9SAKTHIVEL S , PANDIYAN S , MARIKANI S , et al. Applicationof big bang big crunch algorithm for optimal powerflow problems [J] . The International Journal of Engineeringand Science,2013, 2 ( 4 ) :4 1 4 7 . 被引量:1
  • 10AFSHAR M H , MOTAEI I. Constrained big bang-bigcrunch algorithm for optimal solution of large scale reservoiroperation problem [J] . Optim Civ E ng, 2 0 1 1 ,1 : 357 -75. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部