期刊文献+

一种基于蜂王交配的求解复杂问题的演化算法 被引量:7

Evolutionary Algorithm for Solving Complex Problem Based on Queen-Bee Mating
下载PDF
导出
摘要 在对传统演化算法分析的基础上,提出了一种基于蜂王交配的求解复杂优化问题的演化算法(QMSGA)。它的特点在于:模拟自然界中蜂王的交配方法,并引入均匀杂交和平均矢量偏差变异因子策略来达到种群分布的多样性,最终求出复杂优化问题的全局最优解。实验结果表明,对于求解复杂的多峰优化、陡峭函数优化等问题,该算法比传统的演化算法具有更好的精确度和收敛速度。 Through an analysis of the traditional evolutionary algorithm, a new evolutionary algorithm based-on a queen-bee mating evolutionary algorithm (QMSGA) was proposed. This new algorithm greatly improves the traditional evolutionary algorithm and has many good features. It simulates the queen-bee's method of mating in nature. What's more, aiming at enhancing the diversity of population and ultimately getting the global solution, QMSGA also introduces the strategy of Guo's algorithm, uniform recombination as well as the average vector deviation mutation factor. In numerical experiments, this algorithm was used to solve some complex single-objective optimization problems such as multi-peaks functions and steep functions, which the traditional evolutionary algorithm had trouble to solve. Comparing with the traditional evolutionary algorithm, QMSGA has better performance in realizing global optimization and promoting evolution efficiency, and can lead to higher precise solutions.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第7期1707-1712,1757,共7页 Journal of System Simulation
基金 国家自然科学重点基金项目(60133010)
关键词 演化算法 蜂王交配 均匀杂交 平均矢量偏差 evolutionary algorithm queen-bee mating uniform recombination average vector deviation
  • 相关文献

参考文献13

二级参考文献196

  • 1李康顺,李元香,吴志健.使用演化计算求解生成循环码的合法码字[J].计算机工程与应用,2004,40(17):15-17. 被引量:3
  • 2Yao X. A new simulated annealing algorithm, Int. J. Computer Math, 1995, 56: 161-168. 被引量:1
  • 3Glover F. Future paths for integer programming and links to artificial intelligence. Computers and Operations Research,1986, 5: 533-549. 被引量:1
  • 4Fogel D B, System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling. Needham Heights, MA 02194: Ginn Press, 1991. 被引量:1
  • 5Yao X, Liu Y. Evolving neural network ensembles by minimizagion of mutual information. International Journal of Hybrid Intelligent Systems, 2004, 1(1): 12 21. 被引量:1
  • 6Chandra A, Yao X. Evoiutionary framework for the construction of diverse hybrid ensembles, In Proc. the 13th European Symposium on Artificial Neural Networks (ESANN'2005),Bruges, Belgium, April 27-29, 2005, pp,253-258. 被引量:1
  • 7Chandra A, Yao X. DIVACE: Diverse and accurate ensemble learning algorithm. Lecture Notes in Computer Science,2004, 3177:619-625. 被引量:1
  • 8Chandra A, Yao X. Ensemble learning using multiobjective evolutionary algorithms, Journal of Mathematical Modelling and Algorithms, May 2005 (to appear). 被引量:1
  • 9Abbass H A. A memetic Pareto evolutionary approach to artificial neural networks. In Proc. the 14th Australian Joint Conference on Artificial Intelligence, Berlin, 2000, pp.1-12. 被引量:1
  • 10Liu Y, Yao X. Learning and evo]utlon by minimization of mutual information. Lecture Notes in Computer Science, 2002,2439: 495-504. 被引量:1

共引文献147

同被引文献75

引证文献7

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部