摘要
粘性Cahn-Hilliard方程在研究粘稠二元合金的一阶相变动力学中发挥着重要作用.方程解的存在性和唯一性一直是方程研究的重点,也是研究解的动力学行为和特征的基础.首先利用Galerkin近似方法得到截断解,通过先验估计得到截断解的有界性,验证了整体弱解的存在性,最后证明了黏性Cahn-Hilliard方程的弱解的唯一性.
Viscous Cahn-Hilliard equation plays an important role in dynamics of viscous first order phase transitions in cooling binary alloys.Existence and uniqueness results for the weak solutions have been the focus in studying the equation,and the foundation in studying behavior and characteristics of the equation.Approximate solution is constructed by using Galerkin method.Existence result for the weak solution is given from priori estimate.Further,uniqueness result for the weak solution of viscous Cahn-Hilliard equation is derived.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第2期227-230,共4页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅自然科学基金(2008ZB023)资助项目