期刊文献+

应用新型量子粒子群优化算法求解PFSP问题 被引量:5

Using New QPSO Algorithm to Solve Permutation Flow-shop Scheduling Problem
下载PDF
导出
摘要 为了提高粒子群算法在求解调度问题时的搜索能力和优化效率以及避免早熟收敛。通过采用了一种新颖的量子粒子群算法,用量子位的概率幅对粒子位置编码,用量子旋转门实现粒子移动,完成粒子搜索;并采用量子非门来实现变异,从而提高种群多样性。由于每个量子都有两个概率幅,因此每个粒子实际占据两个粒子位置,所以在粒子数目相等的情况下,能加速粒子的搜索进程。仿真实验结果表明,在求解置换流水线生产调度问题时优于基本粒子群算法。 In order to improve the speed and efficiency of PSO and to avoid premature convergence and being easy to run into local optima,the new quantum particle swarms optimization algorithm is proposed to be applied to permutation flow-shop scheduling problem.This algorithm adopt quantum rotation gate to update the position of particle,and quantum controlled-non gate to achieve the particle variation.This can help to improve population diversity.As a result,each quantum has two probability amplitudes,and any particle has two positions actually.So when the numbers of particles are the same,the new QPSO can speed up the search process.According to the simulation results,the new QPSO algorithm in solving FPSP is better than basic PSO algorithm.
出处 《技术与创新管理》 2012年第2期162-165,共4页 Technology and Innovation Management
基金 教育部人文社会科学规划基金项目(10YJA630187) 高等学校博士点基金(20093120110008) 上海市重点学科建设项目(S30504) 上海市研究生创新基金项目(JWCXSL1022)
关键词 智能群优化算法 粒子群优化算法 量子粒子群算法 置换流水线调度问题 Swarm Intelligence Algorithm Particle Swarm Optimization(PSO) Algorithm Quantum Particle Swarms Optimization(QPSO) Algorithm Permutation Flow-Shop scheduling problem(PFSP)
  • 相关文献

参考文献14

  • 1Pinedo M.Scheduling:theory,algorithms and systems[M].2nd ed.Englewood Cliffs,NJ:Prentice-Hall,2002. 被引量:1
  • 2王陵,刘波.微粒群优化与生产调度算法[M].北京:清华大学出版社, 被引量:1
  • 3Garey M R,Johnson D S.Computers and intractability:aguide to the theory of NP-completeness[M].San Fran-cisco:Freeman,1979. 被引量:1
  • 4Johnson S M.Optimal two-and three-stage productionschedules with setup times included[J].Naval ResourchLogistics Quarterly,1954:61-68. 被引量:1
  • 5Dudek R A,Panwalker S S,Smith M L.The lessons offlowshop scheduling research[J].Oper.Res.,1992,40:7-13. 被引量:1
  • 6Shi Y H,Eberhart R C.A modified particle swarm optimi-zer[C]//Proceedings of the IEEE World Congress onComputational Intelligence,Anchorage,1998:69-73. 被引量:1
  • 7Lovbjerg M,Rasmussen T K,Krink T.Hybrid particleswarm optimizer with breeding and subpopulations[C]//Proceeding of the 3rd Genetic and EvolutionaryComputation Conference,Sanfrancisco,2001,469-476. 被引量:1
  • 8吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450
  • 9Eberhar R C,Shi Y H.Comparing inertia weights andconstriction factors in particle swarm optimization[C]//Proceeding of the International Congress on EvolutionaryComputation,Priscataway,IEEE Press,2000,84-88. 被引量:1
  • 10陈炳瑞,冯夏庭.压缩搜索空间与速度范围粒子群优化算法[J].东北大学学报(自然科学版),2005,26(5):488-491. 被引量:20

二级参考文献27

共引文献537

同被引文献39

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部